--- authors: - givenNames: - Norman familyNames: - Gentsch type: Person - givenNames: - Jens familyNames: - Boy type: Person - givenNames: - Juan Daniel familyNames: - Kennedy Batalla type: Person - givenNames: - Diana familyNames: - Heuermann type: Person - givenNames: - Nicolaus familyNames: - von Wirén type: Person - givenNames: - Dörte familyNames: - Schweneker type: Person - givenNames: - Ulf familyNames: - Feuerstein type: Person - givenNames: - Jonas familyNames: - Groß type: Person - givenNames: - Bernahrd familyNames: - Bauer type: Person - givenNames: - Barbara familyNames: - Reinhold-Hurek type: Person - givenNames: - Thomas familyNames: - Hurek type: Person - givenNames: - Fabricio familyNames: - Camacho Céspedes type: Person - givenNames: - Georg familyNames: - Guggenberger type: Person datePublished: value: '2020-05-23' type: Date dateReceived: value: '2020-02-05' type: Date dateAccepted: value: '2020-05-03' type: Date title: >- Catch crop diversity increases rhizosphere carbon input and soil microbial biomass isPartOf: volumeNumber: '56' isPartOf: title: Biology and Fertility of Soils identifiers: - name: doi propertyID: 'https://registry.identifiers.org/registry/doi' value: https://doi.org/10.1007/s00374-020-01475-8 type: PropertyValue publisher: name: 'Springer Science and Business Media {LLC}' type: Organization type: Periodical type: PublicationVolume --- ## Abstract Catch crops increase plant species richness in crop rotations, but are most often grown as pure stands. Here, we investigate... ## Results ### Plant biomass and net ecosystem exchange The NEE decreased significantly with increasing catch crop diversity ([Fig. 1](#fig1)), suggesting increasing $$CO_2$$-C uptake from the atmosphere. chunk: Figure 1 ::: ## Net ecosystem exchange (NEE) of C between catch crop treatments. Bars represent means ± SE; lowercase letters denote significant differences (p < `r p`) between treatments ```r # written with R version 4.0.2 (2020-06-22) -- "Taking Off Again" ##------ Tue Oct 13 11:53:48 2020 ------## # by Norman Gentsch library(tidyverse) library(lme4) library(emmeans) library(multcomp) # set theme for ggplot theme_set(theme_bw()) theme_myBW <- theme(axis.title.x = element_text(size = 10, color = "black"), axis.title.y = element_text(angle = 90, vjust = 1.5, size = 10, color = "black"), axis.text.x = element_text(size = 7, color = "black"), axis.text.y = element_text(size = 10, color = "black"), axis.ticks =element_line(colour="black"), strip.text.x = element_text(size = 10, color = "black"), strip.background = element_blank(), panel.border =element_rect(colour="black", fill=NA), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(size = 12, hjust=0.5), #legend.position=c(0.0,1.0), #legend.justification=c(0,1), legend.text = element_text(size = 10), legend.text.align=0, legend.title = element_text(size = 10), legend.key = element_rect(colour="white", fill = "white"), legend.key.size = unit(5, "mm"), legend.background = element_blank()) # set vector with colors and label COL <- c("Fallow" = "slategray", "Mustard" = "red3" , "Mix4" = "orchid3", "Mix12"= "orange4") SHP <- c("Fallow"=21,"Mustard"=22,"Mix4"=23, "Mix12"=24) data <- read.csv2("data.csv", as.is=T) data$cc_variant <- factor(data$cc_variant, levels = c("Fallow", "Mustard", "Mix4", "Mix12")) data$NEE <- as.numeric(data$NEE) lm_NEE <- lmer(NEE ~ cc_variant + (1|Date), data=data) df_NEE <- cld(emmeans(lm_NEE, specs ="cc_variant"), Letters=letters, sort=FALSE) #Compute Position Pos <- aggregate(NEE~cc_variant,data,min) # summary table for sum.lm <- glht(lm_NEE, linfct = mcp(cc_variant = "Tukey")) #summary(sum.lm)$test$pvalue glht.table <- function(x) { pq <- summary(x)$test mtests <- cbind(pq$coefficients, pq$sigma, pq$tstat, pq$pvalues) colnames(mtests) <- c("Estimate", "Std Error", "z value", "p value") return(mtests) } df.summary <- data.frame(glht.table(sum.lm)) #df.summary abc <- subset (df.summary, p.value<0.01) maxValue <- max(abc$p.value) p <- round(maxValue + 5*10^(-3), 2) colMax <- function(data) sapply(data, max, na.rm = TRUE) # Plot for BFS ggplot(data, aes(x= cc_variant, y=NEE, fill= cc_variant))+ geom_boxplot()+ scale_fill_manual(values = COL, guide=FALSE)+ geom_text(data= merge(df_NEE,Pos) , aes(y=NEE-10,x=cc_variant, label=.group))+ labs(x="Catch crop variant", y=expression("NEE (mg CO"[2]~"- C"~m^{-2}~h^{-1}~")"), fill="")+ theme_myBW+scale_x_discrete(limits=c("Fallow", "Mustard", "Mix4", "Mix12")) #ggsave("Fig1.png", width = 84, height = 70, units = "mm", dpi = 600) #summary(lm_NEE) ``` ::: {#fig1} ## Discussion ### NEE is linked to plant diversity [...] The NEE in our study showed a remarkably strong negative gradient from mustard to mix 4 to mix 12 ([Fig. 1](#fig1)), which suggested higher photosynthetic $$CO_2$$-C fixation rates with increasing catch crop diversity.