# code from https://stackoverflow.com/questions/16834861/create-own-colormap-using-matplotlib-and-plot-color-scale import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mcolors def make_colormap(seq): """Return a LinearSegmentedColormap seq: a sequence of floats and RGB-tuples. The floats should be increasing and in the interval (0,1). """ seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3] cdict = {'red': [], 'green': [], 'blue': []} for i, item in enumerate(seq): if isinstance(item, float): r1, g1, b1 = seq[i - 1] r2, g2, b2 = seq[i + 1] cdict['red'].append([item, r1, r2]) cdict['green'].append([item, g1, g2]) cdict['blue'].append([item, b1, b2]) return mcolors.LinearSegmentedColormap('CustomMap', cdict) # code to make color lighter (0<amount<1) or darker (amount>1) def change_color(color, amount=0.5): """ Lightens the given color by multiplying (1-luminosity) by the given amount. Input can be matplotlib color string, hex string, or RGB tuple. Examples: >> lighten_color('g', 0.3) >> lighten_color('#F034A3', 0.6) >> lighten_color((.3,.55,.1), 0.5) """ import matplotlib.colors as mc import colorsys try: c = mc.cnames[color] except: c = color c = colorsys.rgb_to_hls(*mc.to_rgb(c)) return colorsys.hls_to_rgb(c[0], 1 - amount * (1 - c[1]), c[2]) # example code if __name__ == "__main__": c = mcolors.ColorConverter().to_rgb rvb = make_colormap([c('red'), c('violet'), 0.33, c('violet'), c('blue'), 0.66, c('blue')]) N = 1000 array_dg = np.random.uniform(0, 10, size=(N, 2)) colors = np.random.uniform(-2, 2, size=(N,)) plt.scatter(array_dg[:, 0], array_dg[:, 1], c=colors, cmap=rvb) plt.colorbar() plt.show()