<html lang="en">

  <head>
    <title>Formicine ants swallow their highly acidic poison for gut microbial selection and control
    </title>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <meta http-equiv="X-UA-Compatible" content="ie=edge">
    <link href="https://unpkg.com/@stencila/thema@2/dist/themes/elife/styles.css" rel="stylesheet">
    <script src="https://unpkg.com/@stencila/thema@2/dist/themes/elife/index.js"
      type="text/javascript"></script>
    <script
      src="https://unpkg.com/@stencila/components@&lt;=1/dist/stencila-components/stencila-components.esm.js"
      type="module"></script>
    <script
      src="https://unpkg.com/@stencila/components@&lt;=1/dist/stencila-components/stencila-components.js"
      type="text/javascript" nomodule=""></script>
  </head>

  <body>
    <main role="main">
      <article itemscope="" itemtype="http://schema.org/Article" data-itemscope="root">
        <h1 itemprop="headline">Formicine ants swallow their highly acidic poison for gut microbial
          selection and control</h1>
        <meta itemprop="image"
          content="https://via.placeholder.com/1200x714/dbdbdb/4a4a4a.png?text=Formicine%20ants%20swallow%20their%20highly%20acidic%20poison%20for%20gut%20microbial%20selection%20and%20control">
        <ol data-itemprop="authors">
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Simon Tragust"><span data-itemprop="givenNames"><span
                itemprop="givenName">Simon</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Tragust</span></span><span data-itemprop="emails"><a
                itemprop="email"
                href="mailto:simon.tragust@zoologie.uni-halle.de">simon.tragust@zoologie.uni-halle.de</a></span><span
              data-itemprop="affiliations"><a itemprop="affiliation"
                href="#author-organization-1">1</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Claudia Herrmann"><span data-itemprop="givenNames"><span
                itemprop="givenName">Claudia</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Herrmann</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-1">1</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Jane Häfner"><span data-itemprop="givenNames"><span
                itemprop="givenName">Jane</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Häfner</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-1">1</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Ronja Braasch"><span data-itemprop="givenNames"><span
                itemprop="givenName">Ronja</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Braasch</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-1">1</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Christina Tilgen"><span data-itemprop="givenNames"><span
                itemprop="givenName">Christina</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Tilgen</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-1">1</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Maria Hoock"><span data-itemprop="givenNames"><span
                itemprop="givenName">Maria</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Hoock</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-1">1</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Margarita Artemis Milidakis"><span
              data-itemprop="givenNames"><span itemprop="givenName">Margarita</span><span
                itemprop="givenName">Artemis</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Milidakis</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-1">1</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Roy Gross"><span data-itemprop="givenNames"><span
                itemprop="givenName">Roy</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Gross</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-2">2</a></span>
          </li>
          <li itemscope="" itemtype="http://schema.org/Person" itemprop="author">
            <meta itemprop="name" content="Heike Feldhaar"><span data-itemprop="givenNames"><span
                itemprop="givenName">Heike</span></span><span data-itemprop="familyNames"><span
                itemprop="familyName">Feldhaar</span></span><span data-itemprop="affiliations"><a
                itemprop="affiliation" href="#author-organization-1">1</a></span>
          </li>
        </ol>
        <ol data-itemprop="affiliations">
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-1"
            id="author-organization-1"><span itemprop="name">Animal Ecology I, Bayreuth Center for
              Ecology and Environmental Research (BayCEER), University of Bayreuth,
              Universitätsstraße</span><address itemscope=""
              itemtype="http://schema.org/PostalAddress" itemprop="address"><span
                itemprop="addressLocality">Bayreuth</span><span
                itemprop="addressCountry">Germany</span></address></li>
          <li itemscope="" itemtype="http://schema.org/Organization" itemid="#author-organization-2"
            id="author-organization-2"><span itemprop="name">Microbiology, Biocenter, University of
              Würzburg, Am Hubland</span><address itemscope=""
              itemtype="http://schema.org/PostalAddress" itemprop="address"><span
                itemprop="addressLocality">Würzburg</span><span
                itemprop="addressCountry">Germany</span></address></li>
        </ol><span itemscope="" itemtype="http://schema.org/Organization" itemprop="publisher">
          <meta itemprop="name" content="Unknown"><span itemscope=""
            itemtype="http://schema.org/ImageObject" itemprop="logo">
            <meta itemprop="url"
              content="https://via.placeholder.com/600x60/dbdbdb/4a4a4a.png?text=Unknown">
          </span>
        </span><time itemprop="datePublished" datetime="2020-11-03">2020-11-03</time>
        <ul data-itemprop="genre">
          <li itemprop="genre">Research Article</li>
        </ul>
        <ul data-itemprop="about">
          <li itemscope="" itemtype="http://schema.org/DefinedTerm" itemprop="about"><span
              itemprop="name">Evolutionary Biology</span></li>
          <li itemscope="" itemtype="http://schema.org/DefinedTerm" itemprop="about"><span
              itemprop="name">Microbiology and Infectious Disease</span></li>
        </ul>
        <ul data-itemprop="keywords">
          <li itemprop="keywords">Camponotus floridanus</li>
          <li itemprop="keywords">Acetobacteraceae</li>
          <li itemprop="keywords">Serratia marcescens</li>
          <li itemprop="keywords">phylosymbiosis</li>
          <li itemprop="keywords">microbiom</li>
          <li itemprop="keywords">external immune defense</li>
          <li itemprop="keywords">Other</li>
        </ul>
        <ul data-itemprop="identifiers">
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID"
              content="https://registry.identifiers.org/registry/publisher-id"><span
              itemprop="name">publisher-id</span><span itemprop="value"
              data-itemtype="http://schema.org/Number">60287</span>
          </li>
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID" content="https://registry.identifiers.org/registry/doi">
            <span itemprop="name">doi</span><span itemprop="value">10.7554/eLife.60287</span>
          </li>
          <li itemscope="" itemtype="http://schema.org/PropertyValue" itemprop="identifier">
            <meta itemprop="propertyID"
              content="https://registry.identifiers.org/registry/elocation-id"><span
              itemprop="name">elocation-id</span><span itemprop="value">e60287</span>
          </li>
        </ul>
        <section data-itemprop="description">
          <h2 data-itemtype="http://schema.stenci.la/Heading">Abstract</h2>
          <meta itemprop="description"
            content="Animals continuously encounter microorganisms that are essential for health or cause disease. They are thus challenged to control harmful microbes while allowing the acquisition of beneficial microbes. This challenge is likely especially important for social insects with respect to microbes in food, as they often store food and exchange food among colony members. Here we show that formicine ants actively swallow their antimicrobial, highly acidic poison gland secretion. The ensuing acidic environment in the stomach, the crop, can limit the establishment of pathogenic and opportunistic microbes ingested with food and improve the survival of ants when faced with pathogen contaminated food. At the same time, crop acidity selectively allows acquisition and colonization by Acetobacteraceae, known bacterial gut associates of formicine ants. This suggests that swallowing of the poison in formicine ants acts as a microbial filter and that antimicrobials have a potentially widespread but so far underappreciated dual role in host-microbe interactions.">
          <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Animals continuously
            encounter microorganisms that are essential for health or cause disease. They are thus
            challenged to control harmful microbes while allowing the acquisition of beneficial
            microbes. This challenge is likely especially important for social insects with respect
            to microbes in food, as they often store food and exchange food among colony members.
            Here we show that formicine ants actively swallow their antimicrobial, highly acidic
            poison gland secretion. The ensuing acidic environment in the stomach, the crop, can
            limit the establishment of pathogenic and opportunistic microbes ingested with food and
            improve the survival of ants when faced with pathogen contaminated food. At the same
            time, crop acidity selectively allows acquisition and colonization by Acetobacteraceae,
            known bacterial gut associates of formicine ants. This suggests that swallowing of the
            poison in formicine ants acts as a microbial filter and that antimicrobials have a
            potentially widespread but so far underappreciated dual role in host-microbe
            interactions.</p>
        </section>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="introduction">Introduction
        </h2>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Animals commonly harbor
          gut-associated microbial communities (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib42">bib42</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib99">bib99</a></cite>). Patterns of recurring gut microbial communities have
          been described for many animal groups (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib20">bib20</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib84">bib84</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib106">bib106</a></cite>). The processes generating these patterns are however
          often not well understood. They might result from host filtering (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib94">bib94</a></cite>), a shared evolutionary history between gut-associated
          microbes and their hosts (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib98">bib98</a></cite>) involving microbial
          adaptations to the host environment (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib95">bib95</a></cite>), simply be a byproduct of similar host dietary
          preferences (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib2">bib2</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib56">bib56</a></cite>), or result from interactions between microbes in the
          gut-associated microbial community (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib15">bib15</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib48">bib48</a></cite>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Food is an important
          environmental source of microbial gut associates (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib12">bib12</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib16">bib16</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib36">bib36</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib56">bib56</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib115">bib115</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib114">bib114</a></cite>) but also poses a challenge, the need to discriminate
          between harmful and beneficial microbes, as food may contain microbes that produce toxic
          chemicals or that are pathogenic (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib24">bib24</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib38">bib38</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib73">bib73</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib142">bib142</a></cite>). In social animals, control of harmful microbes in
          food while at the same time allowing the acquisition and transmission of beneficial
          microbes from and with food, is likely especially important. Eusocial Hymenoptera not only
          transport and store food in their stomach, the crop, but also distribute food to members
          of their colony via trophallaxis, i.e. the regurgitation of crop content from donor
          individuals to receiver individuals through mouth-to-mouth feeding (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib49">bib49</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib53">bib53</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib86">bib86</a></cite>). While trophallaxis can facilitate the transmission of
          beneficial microbes, it can also entail significant costs, as it might open the door to
          unwanted microbial opportunists and pathogens that can take advantage of these
          transmission routes (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib108">bib108</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib125">bib125</a></cite>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Here we investigate how
          formicine ants, specifically the Florida carpenter ant <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Camponotus floridanus</em>, solve the
          challenge to control harmful microbes in their food while allowing acquisition and
          transmission of beneficial microbes from and with their food. Apart from specialized
          intracellular endosymbionts associated with the midgut in the ant tribe Camponotini (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib37">bib37</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib45">bib45</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib124">bib124</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib148">bib148</a></cite>), formicine ant species have only low abundances of
          microbial associates in their gut lumen but carry members of the bacterial family
          Acetobacteraceae as a recurring part of their gut microbiota (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib18">bib18</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib31">bib31</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib59">bib59</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib72">bib72</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib124">bib124</a></cite>). Some formicine gut-associated Acetobacteraceae show
          signs of genomic and metabolic adaptations to their host environment indicating
          coevolution and mutual benefit (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib19">bib19</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib32">bib32</a></cite>). But the recurrent presence of Acetobacteraceae in the
          gut of formicine ants potentially also reflects the direct transmission of bacteria among
          individuals, selective uptake on the part of the ants, specific adaptations for colonizing
          ant guts on the part of the bacteria, or some combination of all three (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib42">bib42</a></cite>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Formicine ant species possess a
          highly acidic poison gland secretion containing formic acid as its main component (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib88">bib88</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib110">bib110</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib128">bib128</a></cite>). Although the poison is presumably foremost used as
          a defensive weapon (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib111">bib111</a></cite>), it is also
          distributed to the environment of these ants as an external immune defense trait (sensu
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib112">bib112</a></cite>) to protect their
          offspring and the nest and to limit disease spread within the society (see references in
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib141">bib141</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib21">bib21</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib116">bib116</a></cite>). To this end, ants take up their poison from the
          acidopore, the opening of the poison gland at the gaster tip, into their mouth (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib140">bib140</a></cite>) during a specialized behavior existing only in a
          subset of ant families among all Hymenopterans (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib5">bib5</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib43">bib43</a></cite>), termed acidopore grooming.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Here we first investigate
          whether the poison is also swallowed during acidopore grooming in <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> and seven other formicine
          ant species from three genera in a comparative survey. In survival experiments and in in
          vitro and in vivo bacterial viability and growth experiments, we then investigate whether
          swallowing of the poison can serve gut microbial control and may prevent bacterial
          pathogen infection. Complementing these experiments, we also test whether poison
          swallowing has the potential to limit pathogen transmission during trophallactic food
          exchange. Finally, we explore whether swallowing of the poison acts as a microbial filter
          that is permissible to gut colonization by bacteria from the family Acetobacteraceae.</p>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="results">Results</h2>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-programminglanguage="r">
          <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code>#computational packages and code
library(plyr)#version 1.8.4
library(dplyr)#version 0.8.3
drop.levels &lt;- function(dat){
  # Drop unused factor levels from all factors in a data.frame
  # Author: Kevin Wright.  Idea by Brian Ripley.
  dat[] &lt;- lapply(dat, function(x) x[,drop=TRUE])
  return(dat)
}

#graphical packages
library(ggplot2)#version 3.2.1
library(ggkm)#version 0.6.0; see https://github.com/sachsmc/ggkm

#statistical packages
library(lme4)#version 1.1-21
library(multcomp)#version 1.4-10
library(DHARMa)#version 0.2.4
library(coxme)#2.2-14
library(glmmTMB)#version 0.2.3

#in order for the package multcomp to work with glmmTMB you need this function see: https://github.com/glmmTMB/glmmTMB/blob/master/glmmTMB/vignettes/model_evaluation.rmd
glht_glmmTMB &lt;- function (model, ..., component=&quot;cond&quot;) {
    glht(model, ...,
         coef. = function(x) fixef(x)[[component]],
         vcov. = function(x) vcov(x)[[component]],
         df = NULL)
}


library(broman) # for myround function to round p-values for inline text
format_pval &lt;- function(x){
  if (x &lt; .001) return(paste(&#39;&lt;0.001&#39;))
  if (x &gt; .05 &amp; x &lt; 0.1) return(paste(&#39;&gt;0.05&#39;))
  paste(&#39;=&#39;, myround(x, 3))   # 3 = no. of digits to round p value to if .001 &lt; p &lt; .250.
}


# the raw data is stored at the Dryad Digital Data Repository: https://doi.org/10.5061/dryad.k0p2ngf4v
</code></pre>
        </stencila-code-chunk>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="swallowing-of-the-formicine-ant-poison-gland-secretion-leads-to-acidic-crop-environments">
          Swallowing of the formicine ant poison gland secretion leads to acidic crop environments
        </h3>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-programminglanguage="r">
          <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code>######################################################################################################
######################### Fig 1 a,b,c: Crop acidification ############################################
######################################################################################################


#############loading data for Fig.1a
acidification.c.floridanus&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452657&quot;,header=T)#choose file: Supplementary Data Fig.1a.txt
#str(acidification.c.floridanus)
acidification.c.floridanus$time&lt;-factor(acidification.c.floridanus$time,c(&quot;0+4h&quot;,&quot;0+24h&quot;,&quot;0+48h&quot;,&quot;48+4h&quot;))#reorder factor time


#############statistcal analysis
m.acidification.c.floridanus&lt;-lmer(log(ph)~time+(1|colony),data=acidification.c.floridanus)
#summary(m.acidification.c.floridanus)

#model validation
res.m.acidification.c.floridanus&lt;-simulateResiduals(fittedModel=m.acidification.c.floridanus)
#plot(res.m.acidification.c.floridanus)

#significance of predictor time since feeding (four levels: 0+4h, 0+24h, 0+48h, 48h+4h)
m.acidification.c.floridanus0&lt;-lmer(log(ph)~1+(1|colony),data=acidification.c.floridanus)
#anova(m.acidification.c.floridanus,m.acidification.c.floridanus0)

#post-hoc comporisons of predictor-levels time since feeding
m.acidification.c.floridanus.glht&lt;-glht(m.acidification.c.floridanus,linfct=mcp(time=&quot;Tukey&quot;))
output.m.acidification.c.floridanus.glht&lt;-summary(m.acidification.c.floridanus.glht,test=adjusted(&quot;Westfall&quot;))
#output.m.acidification.c.floridanus.glht

#calculation of median values and confidence intervals of predictor time since feeding (four levels: 0+4h, 0+24h, 0+48h, 48h+4h)
ph.summary.c.floridanus&lt;-ddply(acidification.c.floridanus,&quot;time&quot;,summarize,
N=length(ph),
median=quantile(ph,0.5),
lowerCI=quantile(ph,0.025),
upperCI=quantile(ph,0.975))
#ph.summary.c.floridanus


#############loading data for Fig.1b
mobility.c.floridanus&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452656&quot;,header=T)#choose file: Supplementary Data Fig.1b.txt
#str(mobility.c.floridanus)


#############statistcal analysis for Fig.1b
m.mobility.c.floridanus&lt;-lmer(ph~treatment+(1|colony),data=mobility.c.floridanus)
#summary(m.mobility.c.floridanus)

#model validation
res.m.mobility.c.floridanus&lt;-simulateResiduals(fittedModel=m.mobility.c.floridanus)
#plot(res.m.mobility.c.floridanus)

#significance of predictor ant manipulation (two levels: FA+ and FA-, i.e. ants with and without acidopore access)
m.mobility.c.floridanus0&lt;-lmer(ph~1+(1|colony),data=mobility.c.floridanus)
#anova(m.mobility.c.floridanus,m.mobility.c.floridanus0)



#############loading data for Fig.1c
mobility.formicine.ants&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452659&quot;,header=T)#choose data: Supplementary Data Fig.1c.txt
#str(mobility.formicine.ants)

#subsetting the data frame into the six formicine ant species
mobility.c.maculatus&lt;-subset(mobility.formicine.ants,colony==&quot;c2&quot;)
mobility.c.maculatus&lt;-drop.levels(mobility.c.maculatus)
#str(mobility.c.maculatus)

mobility.l.fuliginosus&lt;-subset(mobility.formicine.ants,colony==&quot;l1&quot;)
mobility.l.fuliginosus&lt;-drop.levels(mobility.l.fuliginosus)
#str(mobility.l.fuliginosus)

mobility.f.pratensis&lt;-subset(mobility.formicine.ants,colony==&quot;f1&quot;)
mobility.f.pratensis&lt;-drop.levels(mobility.f.pratensis)
#str(mobility.f.pratensis)

mobility.f.rufibarbis&lt;-subset(mobility.formicine.ants,colony==&quot;f2&quot;)
mobility.f.rufibarbis&lt;-drop.levels(mobility.f.rufibarbis)
#str(mobility.f.rufibarbis)

mobility.f.cinerea&lt;-subset(mobility.formicine.ants,colony==&quot;f3&quot;)
mobility.f.cinerea&lt;-drop.levels(mobility.f.cinerea)
#str(mobility.f.cinerea)

mobility.f.cunicularia&lt;-subset(mobility.formicine.ants,colony==&quot;f4&quot;)
mobility.f.cunicularia&lt;-drop.levels(mobility.f.cunicularia)
#str(mobility.f.cunicularia)

mobility.f.fuscocinerea&lt;-subset(mobility.formicine.ants,colony==&quot;f5&quot;)
mobility.f.fuscocinerea&lt;-drop.levels(mobility.f.fuscocinerea)
#str(mobility.f.fuscocinerea)


#############statistcal analysis for Fig.1c
#wilcox.test(ph~treatment,data=mobility.c.maculatus)
#wilcox.test(ph~treatment,data=mobility.l.fuliginosus)
#wilcox.test(ph~treatment,data=mobility.f.pratensis)
#wilcox.test(ph~treatment,data=mobility.f.rufibarbis)
#wilcox.test(ph~treatment,data=mobility.f.cinerea)
#wilcox.test(ph~treatment,data=mobility.f.cunicularia)
#wilcox.test(ph~treatment,data=mobility.f.fuscocinerea)



######################################################################################################
###################### Fig. 1 - figure supplement 1: crop acidity baseline ###########################
######################################################################################################


#############loading data for Fig.1 - figure supplement 1
acidification.baseline&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452660&quot;,header=T)#choose file: Supplementary Data Fig.1 - figure supplement 1.txt
#str(acidification.baseline)

#calculation of median values and confidence intervals of predictor status (two levels:satiated and starved) and worker caste (two levels: minor and major)
ph.summary.acidification.baseline&lt;-ddply(acidification.baseline,c(&quot;status&quot;,&quot;caste&quot;),summarize,
N=length(ph),
median=quantile(ph,0.5),
lowerCI=quantile(ph,0.025),
upperCI=quantile(ph,0.975))
#ph.summary.acidification.baseline



######################################################################################################
###################### Fig. 1 - figure supplement 2: acidopore grooming ##############################
######################################################################################################


#############loading data for Fig. 1 - figure supplement 2
acidopore.grooming&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452661&quot;,header=T)#choose file: Supplementary Data Fig.1 - figure supplement 2.txt
#str(acidopore.grooming)
food.treatment1&lt;-factor(acidopore.grooming$food.treatment,levels=c(&quot;unfed&quot;,&quot;water&quot;,&quot;honey&quot;))#reorder factor treatment


#############statistcal analysis for Fig. 1 - figure supplement 2
m.grooming&lt;-glmer.nb(groomingevents~food.treatment+(1|colony),data=acidopore.grooming)
#summary(m.grooming)

#model validation
res.m.grooming&lt;-simulateResiduals(fittedModel=m.grooming)
#plot(res.m.grooming)

#significance of predictor food treatment (three levels: unfed, water, honey)
m.grooming0&lt;-glmer.nb(groomingevents~1+(1|colony),data=acidopore.grooming)
#anova(m.grooming,m.grooming0)

#post-hoc comporisons of predictor-levels food treatment
m.grooming.glht&lt;-glht(m.grooming,linfct=mcp(food.treatment=&quot;Tukey&quot;))
output.m.grooming.glht&lt;-summary(m.grooming.glht,test=adjusted(&quot;Westfall&quot;))
#output.m.grooming.glht




######################################################################################################
############################### Fig. 1 - figure supplement 3: pH midgut  #############################
######################################################################################################


#############loading data for Fig.1 - figure supplement 3
ph.midgut&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452662&quot;, header=T)#choose data: Supplementary Data Fig.1 - figure supplement 3.txt
#str(ph.midgut)


#############statistcal analysis for Fig.1 - figure supplement 3
m.ph.midgut&lt;-lmer(ph~gutregion+(1|colony),data=ph.midgut)
#summary(m.ph.midgut)

#model validation
res.m.ph.midgut&lt;-simulateResiduals(fittedModel=m.ph.midgut)
#plot(res.m.ph.midgut)

#significance of predictor gutregion (five levels: crop, midgut.position1, midgut.position2, midgut.position3, midgut.position4)
m.ph.midgut0&lt;-lmer(ph~1+(1|colony),data=ph.midgut)
#anova(m.ph.midgut,m.ph.midgut0)

#post-hoc comporisons of predictor-levels position 
m.ph.midgut.glht&lt;-glht(m.ph.midgut,linfct=mcp(gutregion=&quot;Tukey&quot;))
output.m.ph.midgut.glht&lt;-summary(m.ph.midgut.glht,test=adjusted(&quot;Westfall&quot;))
#output.m.ph.midgut.glht

#calculation of median values and confidence intervals of predictor position 
ph.summary.midgut&lt;-ddply(ph.midgut,&quot;gutregion&quot;,summarize,
N=sum(!is.na(ph)),
median=quantile(ph,0.5,na.rm=TRUE),
lowerCI=quantile(ph,0.025,na.rm=TRUE),
upperCI=quantile(ph,0.975,na.rm=TRUE),
mean=mean(ph,na.rm=TRUE),
sd=sd(ph,na.rm=TRUE),
length=length(!is.na(ph)),
se=sd/sqrt(length))
#ph.summary.midgut
</code></pre>
        </stencila-code-chunk>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To reveal whether formicine
          ants swallow their acidic poison during acidopore grooming, we first monitored acidity
          levels in the crop lumen of the Florida carpenter ant <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Camponotus floridanus</em> after feeding
          them 10% honey water (pH = 5). We found that after feeding the crop became increasingly
          acidic over time, reaching highly acidic values 48 hr after feeding (median pH = 
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">ph.summary.c.floridanus[3,3]</code><output slot="output"></output>
          </stencila-code-expression>; 95% CI: <stencila-code-expression programming-language="r"
            itemscope="" itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">myround(ph.summary.c.floridanus[3,4],1)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">myround(ph.summary.c.floridanus[3,5],1)</code><output
              slot="output"></output></stencila-code-expression>), whilst renewed access to food
          after 48 hr raised the pH to levels recorded after the first feeding (<a href="#fig1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1a</a>; LMM, LR-test, χ<sup
            itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.acidification.c.floridanus,m.acidification.c.floridanus0)[2,6],2)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.acidification.c.floridanus,m.acidification.c.floridanus0)[2,7]</code><output
              slot="output"></output></stencila-code-expression>, p<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">format_pval(
              myround(anova(m.acidification.c.floridanus,m.acidification.c.floridanus0)[2,8],3))</code><output
              slot="output"></output></stencila-code-expression>; Westfall corrected post-hoc
          comparisons: 0+4 hr versus. 48h+4 hr: p=<stencila-code-expression programming-language="r"
            itemscope="" itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">myround((output.m.acidification.c.floridanus.glht$test)$pvalues[3],3)</code><output
              slot="output"></output></stencila-code-expression>, all other comparisons: p
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">format_pval(myround((output.m.acidification.c.floridanus.glht$test)$pvalues[2],3))</code><output
              slot="output"></output></stencila-code-expression>). We also found that crop pH levels
          of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants
          were highly acidic in workers taken directly out of a satiated colony (<a href="#fig1s1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 1</a>;
          major workers: median pH = <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">ph.summary.acidification.baseline[1,4]</code><output
              slot="output"></output></stencila-code-expression>, 95% CI: <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(ph.summary.acidification.baseline[1,5],1)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(ph.summary.acidification.baseline[1,6],1)</code><output
              slot="output"></output></stencila-code-expression>; minor workers: median pH = 
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">ph.summary.acidification.baseline[2,4]</code><output
              slot="output"></output></stencila-code-expression>, CI: <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(ph.summary.acidification.baseline[2,5],1)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(ph.summary.acidification.baseline[2,6],1)</code><output
              slot="output"></output></stencila-code-expression>) and in worker cohorts that were
          satiated for 3 d and then starved for 24 hr before measurements (majors: median pH = 
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">ph.summary.acidification.baseline[3,4]</code><output
              slot="output"></output></stencila-code-expression>, 95% CI: <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(ph.summary.acidification.baseline[3,5],1)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(ph.summary.acidification.baseline[1,6],1)</code><output
              slot="output"></output></stencila-code-expression>; minors: median pH = 
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">ph.summary.acidification.baseline[4,4]</code><output
              slot="output"></output></stencila-code-expression>, CI: <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(ph.summary.acidification.baseline[4,5],1)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(ph.summary.acidification.baseline[4,6],1)</code><output
              slot="output"></output></stencila-code-expression>), suggesting that under natural
          conditions an acidic baseline pH in the crop lumen is maintained following perturbation
          thereof through ingested fluids.</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1a" title="Figure 1a">
          <label data-itemprop="label">Figure 1a</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 50
#&#39; @height 35

#addition of median values per time since feeding into the data.frame as a new variable
acidification.c.floridanus2&lt;-acidification.c.floridanus%&gt;%group_by(time)%&gt;%mutate(medianph=median(ph))

#definition of universal ph indicator colors: 1-6
ph.colors.rgb1&lt;-c(
&quot;202 58 67&quot;,
&quot;235 81 42&quot;,
&quot;252 125 19&quot;,
&quot;253 190 2&quot;,
&quot;254 250 0&quot;,
&quot;235 230 54&quot;
)

#transformation of RGB colors into hex colors
ph.colors.hex1&lt;-sapply(strsplit(ph.colors.rgb1, &quot; &quot;), function(ph.colors.rgb1)
    rgb(ph.colors.rgb1[1], ph.colors.rgb1[2], ph.colors.rgb1[3], maxColorValue=255))

#plotting of Fig.1a
fig.1a&lt;-ggplot()+
geom_boxplot(data=acidification.c.floridanus2,mapping=aes(x=time,y=ph,fill=medianph),colour=&quot;grey30&quot;,lwd=1.5,outlier.shape=NA,alpha=0.5,width=0.4,coef=0)+
scale_fill_gradientn(colours=ph.colors.hex1,breaks=c(1,2,3,4,5,6),limits=c(1,6.5),guide=FALSE)+
geom_point(data = acidification.c.floridanus,mapping=aes(x=time,y=ph,fill=ph),pch=21,color=&quot;white&quot;,position=position_jitter(width=0.1),size=6.5,alpha=1)+
scale_x_discrete(name=&quot;Time after feeding&quot;,labels=c(&quot;0h+4h&quot;,&quot;0h+24h&quot;,&quot;0h+48h&quot;,&quot;48h+4h&quot;))+
scale_y_continuous(name=&quot;pH-value&quot;,limits=c(1,6),breaks=c(1,2,3,4,5,6))+
annotate(&quot;text&quot;,x=c(1,2,3,4),y=c(5.5,4.4,4,5.5),size=14,label=c(&quot;a&quot;,&quot;b&quot;,&quot;c&quot;,&quot;a&quot;),fontface=2)+#statistical significance 
annotate(&quot;text&quot;,x=c(2.5),y=c(6),size=16,label=c(&quot;***&quot;),fontface=2)+
labs(tag=&quot;a&quot;)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=1.5),
      axis.ticks=element_line(colour=&quot;black&quot;,size=1.5),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=35),
      axis.text.y=element_text(colour=&quot;black&quot;,size=35),
      axis.title.x=element_text(colour=&quot;black&quot;,size=40,margin=margin(20,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=40,margin=margin(0,22,0,0)),
      plot.tag=element_text(colour=&quot;black&quot;,size=60,face=&quot;bold&quot;),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key.height=unit(4,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=&quot;right&quot;)
print(fig.1a)</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="acidification-of-formicine-ant-crop-lumens-through-swallowing-of-acidic-poison-gland-secretions">
              Acidification of formicine ant crop lumens through swallowing of acidic poison gland
              secretions.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">a</strong>) The pH of crop lumens at 4 hr,
              24 hr, and 48 hr after feeding <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants 10% honey water
              (pH = 5) at 0 hr and at 4 hr after re-feeding ants at 48 hr (LMM, LR-test, χ<sup
                itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.acidification.c.floridanus,m.acidification.c.floridanus0)[2,6],2)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.acidification.c.floridanus,m.acidification.c.floridanus0)[2,7]</code><output
                  slot="output"></output></stencila-code-expression>, p<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(
                  myround(anova(m.acidification.c.floridanus,m.acidification.c.floridanus0)[2,8],3))</code><output
                  slot="output"></output></stencila-code-expression>, same letters indicate p=
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((output.m.acidification.c.floridanus.glht$test)$pvalues[3],3)</code><output
                  slot="output"></output></stencila-code-expression> and different letters indicate
              p<stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(myround((output.m.acidification.c.floridanus.glht$test)$pvalues[2],3))</code><output
                  slot="output"></output></stencila-code-expression> in Westfall corrected post hoc
              comparisons). </p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1b" title="Figure 1b">
          <label data-itemprop="label">Figure 1b</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 50
#&#39; @height 30

#############plot fig.1b
#calculation of median values and confidence intervals of predictor ant manipulation
ph.summary.mobility.c.floridanus&lt;-ddply(mobility.c.floridanus,&quot;treatment&quot;,summarize,
N=length(ph),
median=quantile(ph,0.5),
lowerCI=quantile(ph,0.025),
upperCI=quantile(ph,0.975))

#addition of median values per ant manipulation into the data.frame as a new variable
mobility.c.floridanus2&lt;-mobility.c.floridanus%&gt;%group_by(treatment)%&gt;%mutate(medianph=median(ph))

#definition of universal ph indicator colors: 1-6
ph.colors.rgb1&lt;-c(
&quot;202 58 67&quot;,
&quot;235 81 42&quot;,
&quot;252 125 19&quot;,
&quot;253 190 2&quot;,
&quot;254 250 0&quot;,
&quot;235 230 54&quot;
)

#transformation of RGB colors into hex colors
ph.colors.hex1&lt;-sapply(strsplit(ph.colors.rgb1, &quot; &quot;), function(ph.colors.rgb1)
    rgb(ph.colors.rgb1[1], ph.colors.rgb1[2], ph.colors.rgb1[3], maxColorValue=255))

#plotting of Fig.1b
fig.1b&lt;-ggplot()+
geom_boxplot(data=mobility.c.floridanus2,mapping=aes(x=treatment,y=ph,fill=medianph,colour=treatment),outlier.shape=NA,lwd=1.5,alpha=0.5,width=0.6,coef=0)+
scale_fill_gradientn(colours=ph.colors.hex1,breaks=c(1,2,3,4,5,6),limits=c(1,6.5),guide=FALSE)+
scale_color_manual(values=c(&quot;grey70&quot;,&quot;grey30&quot;),guide=FALSE)+
geom_point(data = mobility.c.floridanus, mapping=aes(x=treatment,y=ph,fill=ph),pch=21,color=&quot;white&quot;,position=position_jitter(width=0.1),size=6.5,alpha=1)+
scale_x_discrete(name=&quot;Treatment&quot;,labels=c(&quot;FA -&quot;,&quot;FA +&quot;))+
scale_y_continuous(name=&quot;pH-value&quot;,limits=c(1,6),breaks=c(1,2,3,4,5,6))+
geom_segment(aes(x = 1, y = 5.5, xend = 2, yend = 5.5),lwd=1.5)+
annotate(&quot;text&quot;,x=c(1.5),y=c(5.6),size=16,label=c(&quot;***&quot;),fontface=2)+#statistical significance
labs(tag=&quot;b&quot;)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=1.5),
      axis.ticks=element_line(colour=&quot;black&quot;,size=1.5),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=35),
      axis.text.y=element_text(colour=&quot;black&quot;,size=35),
      axis.title.x=element_text(colour=&quot;black&quot;,size=40,margin=margin(20,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=40,margin=margin(0,22,0,0)),
      plot.tag=element_text(colour=&quot;black&quot;,size=60,face=&quot;bold&quot;),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key.height=unit(4,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=&quot;right&quot;)
fig.1b</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="acidification-of-formicine-ant-crop-lumens-through-swallowing-of-acidic-poison-gland-secretions-1">
              Acidification of formicine ant crop lumens through swallowing of acidic poison gland
              secretions.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">b</strong>) The pH of crop lumens in <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants
              that were either prevented to ingest the formic acid containing poison gland secretion
              (FA-) or not (FA+) for 24 hr after feeding (LMM, LR-test, χ<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(
                  anova(m.mobility.c.floridanus,m.mobility.c.floridanus0)[2,6],2)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.mobility.c.floridanus,m.mobility.c.floridanus0)[2,7]</code><output
                  slot="output"></output></stencila-code-expression>, p<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(
                  format_pval(myround(anova(m.mobility.c.floridanus,m.mobility.c.floridanus0)[2,8],3)))</code><output
                  slot="output"></output></stencila-code-expression>). </p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1c" title="Figure 1c">
          <label data-itemprop="label">Figure 1c</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 80
#&#39; @height 50

#############plot fig.1c
mobility.formicine.ants$species2&lt;-factor(mobility.formicine.ants$species,levels=c(&quot;maculatus&quot;,&quot;fuliginosus&quot;,&quot;cinerea&quot;,&quot;cunicularia&quot;,&quot;fuscocinerea&quot;,&quot;pratensis&quot;,&quot;rufibarbis&quot;))#reorder facotr species

#calculation of median values and confidence intervals of predictor ant manipulation (two levels:FA- and FA+) and of factor species (six levels)
ph.summary.mobility.formicine.ants&lt;-ddply(mobility.formicine.ants,c(&quot;species2&quot;,&quot;treatment&quot;),summarize,
N=length(ph),
median=quantile(ph,0.5),
lowerCI=quantile(ph,0.025),
upperCI=quantile(ph,0.975))

#addition of median values per ant manipulation into the data.frame as a new variable
mobility.formicine.ants2&lt;-mobility.formicine.ants%&gt;%group_by(colony,treatment)%&gt;%mutate(medianph=median(ph))

#definition of universal ph indicator colors: 1-6
ph.colors.rgb1&lt;-c(
&quot;202 58 67&quot;,
&quot;235 81 42&quot;,
&quot;252 125 19&quot;,
&quot;253 190 2&quot;,
&quot;254 250 0&quot;,
&quot;235 230 54&quot;
)

#transformation of RGB colors into hex colors
ph.colors.hex1&lt;-sapply(strsplit(ph.colors.rgb1, &quot; &quot;), function(ph.colors.rgb1)
    rgb(ph.colors.rgb1[1], ph.colors.rgb1[2], ph.colors.rgb1[3], maxColorValue=255))

#plotting of Fig.1c
fig.1c&lt;-ggplot()+
geom_boxplot(data=mobility.formicine.ants2,mapping=aes(x=species2,y=ph,fill=medianph,colour=treatment),position=position_dodge(0.5),outlier.shape=NA,lwd=1.5,alpha=0.5,width=0.4,coef=0)+
scale_fill_gradientn(colours=ph.colors.hex1,guide=FALSE,breaks=c(1,2,3,4,5,6),limits=c(1,6.5))+
scale_color_manual(values=c(&quot;grey70&quot;,&quot;grey30&quot;),name=&quot;Animal treatment:&quot;,labels=c(&quot;FA-&quot;,&quot;FA+&quot;))+
geom_point(data = mobility.formicine.ants, mapping=aes(x=species2,y=ph,fill=ph,group=treatment),pch=21,color=&quot;white&quot;,position=position_jitterdodge(jitter.width=0.1,jitter.height=0.05,dodge.width=0.5),size=5,alpha=1)+
scale_x_discrete(name=&quot;Species&quot;,
labels=c(
expression(paste(italic(&quot;C. maculatus&quot;))),
expression(paste(italic(&quot;L. fuliginosus&quot;))),
expression(paste(italic(&quot;F. cinerea&quot;))),
expression(paste(italic(&quot;F.cunicularia&quot;))),
expression(paste(italic(&quot;F. fuscocinerea&quot;))),
expression(paste(italic(&quot;F. pratensis&quot;))),
expression(paste(italic(&quot;F. rufibarbis&quot;)))
))+
scale_y_continuous(name=&quot;pH-value&quot;,limits=c(1,6),breaks=c(1,2,3,4,5,6))+
geom_segment(aes(x = 0.875, y = 3.9, xend = 1.125, yend = 3.9),lwd=2)+
geom_segment(aes(x = 1.875, y = 3.9, xend = 2.125, yend = 3.9),lwd=2)+
geom_segment(aes(x = 2.875, y = 4.9, xend = 3.125, yend = 4.9),lwd=2)+
geom_segment(aes(x = 3.875, y = 4.9, xend = 4.125, yend = 4.9),lwd=2)+
geom_segment(aes(x = 4.875, y = 4.9, xend = 5.125, yend = 4.9),lwd=2)+
geom_segment(aes(x = 5.875, y = 5.4, xend = 6.125, yend = 5.4),lwd=2)+
geom_segment(aes(x = 6.875, y = 4.4, xend = 7.125, yend = 4.4),lwd=2)+
annotate(&quot;text&quot;,x=c(1,2,3,4,5,6,7),y=c(4.1,4.1,5.1,5.1,5.1,5.6,4.6),size=8,label=
c(
expression(paste(italic(&quot;P&quot;),&quot; = 0.036&quot;)),
expression(paste(italic(&quot;P&quot;),&quot; &lt; 0.001&quot;)),
expression(paste(italic(&quot;P&quot;),&quot; &lt; 0.001&quot;)),
expression(paste(italic(&quot;P&quot;),&quot; = 0.007&quot;)),
expression(paste(italic(&quot;P&quot;),&quot; &lt; 0.001&quot;)),
expression(paste(italic(&quot;P&quot;),&quot; = 0.018&quot;)),
expression(paste(italic(&quot;P&quot;),&quot; &lt; 0.001&quot;))),
fontface=1)+
labs(tag=&quot;c&quot;)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=1.5),
      axis.ticks=element_line(colour=&quot;black&quot;,size=1.5),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=30,angle=50,hjust=1),
      axis.text.y=element_text(colour=&quot;black&quot;,size=30),
      axis.title.x=element_text(colour=&quot;black&quot;,size=40,margin=margin(20,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=40,margin=margin(0,22,0,0)),
      plot.tag=element_text(colour=&quot;black&quot;,size=60,face=&quot;bold&quot;),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=30),
      legend.text=element_text(size=30),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key.height=unit(4,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=&quot;right&quot;)
fig.1c</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="acidification-of-formicine-ant-crop-lumens-through-swallowing-of-acidic-poison-gland-secretions-2">
              Acidification of formicine ant crop lumens through swallowing of acidic poison gland
              secretions.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">(<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">c</strong>) The pH-value of crop lumens 24
              hr after feeding in seven formicine ant species that were either prevented to ingest
              the formic acid containing poison gland secretion (FA-) or not (FA+). Wilcoxon
              rank-sum tests (two-sided). Lines and shaded boxes show the median and interquartile
              range; points show all data. Colors in shaded rectangles near the y-axis represent
              universal indicator pH colors. Color filling of shaded boxes correspond to the median
              pH color of x-axis groups and color filling of points correspond to universal
              indicator pH colors. The border of shaded boxes represents animal treatment (light
              gray: prevention of poison ingestion, FA-; dark gray: poison ingestion not prevented,
              FA+).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s1"
          title="Figure 1—figure supplement 1."><label data-itemprop="label">Figure 1—figure
            supplement 1.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

#addition of median values per status and caste into the data.frame as a new variable
acidification.baseline2&lt;-acidification.baseline%&gt;%group_by(status,caste)%&gt;%mutate(medianph=median(ph))

#definition of universal ph indicator colors: 1-6
ph.colors.rgb1&lt;-c(
&quot;202 58 67&quot;,
&quot;235 81 42&quot;,
&quot;252 125 19&quot;,
&quot;253 190 2&quot;,
&quot;254 250 0&quot;,
&quot;235 230 54&quot;
)

#transformation of RGB colors into hex colors
ph.colors.hex1&lt;-sapply(strsplit(ph.colors.rgb1, &quot; &quot;), function(ph.colors.rgb1)
    rgb(ph.colors.rgb1[1], ph.colors.rgb1[2], ph.colors.rgb1[3], maxColorValue=255))

#plotting of Fig.1 - figure supplement 1
fig.1.figure.supplement1&lt;-ggplot()+
geom_boxplot(data=acidification.baseline2,mapping=aes(x=status,y=ph,fill=medianph,colour=caste),position=position_dodge(0.5),outlier.shape=NA,lwd=1.5,alpha=0.5,width=0.4,coef=0)+
scale_fill_gradientn(colours=ph.colors.hex1,guide=FALSE,breaks=c(1,2,3,4,5,6),limits=c(1,6.5))+
scale_color_manual(values=c(&quot;grey70&quot;,&quot;grey30&quot;),name=&quot;Worker caste:&quot;,labels=c(&quot;Major&quot;,&quot;Minor&quot;))+
geom_point(data = acidification.baseline, mapping=aes(x=status,y=ph,fill=ph,group=caste),pch=21,color=&quot;white&quot;,position=position_jitterdodge(jitter.width=0.1,jitter.height=0.05,dodge.width=0.5),size=5,alpha=1)+
scale_x_discrete(name=&quot;Animal feeding status&quot;,labels=c(&quot;Colony:\nsatiated&quot;,&quot;Colony cohort:\nstarved&quot;))+
scale_y_continuous(name=&quot;pH-value&quot;,limits=c(1,6),breaks=c(1,2,3,4,5,6))+
theme(axis.line = element_line(colour = &quot;black&quot;,size=1.5),
      axis.ticks=element_line(colour=&quot;black&quot;,size=1.5),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=30,angle=30,hjust=1),
      axis.text.y=element_text(colour=&quot;black&quot;,size=30),
      axis.title.x=element_text(colour=&quot;black&quot;,size=40,margin=margin(20,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=40,margin=margin(0,22,0,0)),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=30),
      legend.text=element_text(size=30),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key.height=unit(4,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=&quot;right&quot;)
fig.1.figure.supplement1</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="baseline-acidity-of-c-floridanus-crop-lumens-under-satiated-and-starved-conditions">
              Baseline acidity of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> crop lumens under
              satiated and starved conditions.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">pH of crop lumens in <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> workers
              (light gray: major workers, dark gray: minor workers) that were either taken directly
              out of a satiated colony or that were kept in cohorts of ~100 individuals under
              satiated conditions for 3 d and then starved for 24 hr before measuring the pH. Lines
              and shaded boxes show the median and interquartile range; points show all data. Colors
              in shaded rectangles near the y-axis represent universal indicator pH colors. Color
              filling of shaded boxes correspond to the median pH color of x-axis groups and color
              filling of points correspond to universal indicator pH colors. Border of shaded boxes
              represents animal caste (light gray: major workers; dark gray: minor workers).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s2"
          title="Figure 1—figure supplement 2."><label data-itemprop="label">Figure 1—figure
            supplement 2.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

############plot Fig. 1 - figure supplement 2
fig.1.figure.supplement2&lt;-ggplot()+
geom_boxplot(data=acidopore.grooming,mapping=aes(x=food.treatment1,y=groomingevents,fill=food.treatment1),outlier.shape=NA,lwd=1.5,alpha=0.2,width=0.4,coef=0)+
geom_point(data=acidopore.grooming,mapping=aes(x=food.treatment1,y=groomingevents,color=food.treatment1),position=position_jitter(width=0.1),size=4,alpha=0.7)+
scale_fill_manual(values=c(&quot;white&quot;,&quot;white&quot;,&quot;white&quot;),name=&quot;Food treatment (Mean/Median):&quot;,labels=c(&quot;unfed&quot;,&quot;water&quot;,&quot;honey&quot;),guide=FALSE)+
scale_colour_manual(values=c(&quot;grey&quot;,&quot;dodgerblue&quot;,&quot;yellow1&quot;),name=&quot;Raw data&quot;,guide=FALSE)+
scale_x_discrete(name=&quot;Food&quot;,labels=c(&quot;unfed&quot;,&quot;water&quot;,&quot;honey&quot;))+
scale_y_continuous(name=&quot;Acidopre grooming frequency&quot;,limits=c(-0.5,15))+
annotate(&quot;text&quot;,x=c(1,2,3),y=c(8,11,11),size=10,label=c(&quot;a&quot;,&quot;b&quot;,&quot;b&quot;),fontface=2)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=1.5),
      axis.ticks=element_line(colour=&quot;black&quot;,size=1.5),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=18),
      axis.text.y=element_text(colour=&quot;black&quot;,size=18),
      axis.title.x=element_text(colour=&quot;black&quot;,size=25,margin=margin(20,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=25,margin=margin(0,22,0,0)),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=&quot;right&quot;)
fig.1.figure.supplement2
</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="acidopore-grooming-frequency-of-c-floridanus-after-ingestion-of-different-food-types">
              Acidopore grooming frequency of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> after ingestion of
              different food types.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Frequency of acidopore
              grooming within 30 min. after fluid ingestion (water or 10% honey water) compared to
              ants that did not receive any fluid (unfed) (GLMM, LR-test, χ<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.grooming,m.grooming0)[2,6],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.grooming,m.grooming0)[2,7]</code><output
                  slot="output"></output></stencila-code-expression>, p<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(
                  myround(anova(m.grooming,m.grooming0)[2,8],3))</code><output
                  slot="output"></output></stencila-code-expression>,same letters indicate p=
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((output.m.grooming.glht$test)$pvalues[2],3)</code><output
                  slot="output"></output></stencila-code-expression> and different letters indicate
              p<stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(myround((output.m.grooming.glht$test)$pvalues[1],3))</code><output
                  slot="output"></output></stencila-code-expression> in Westfall corrected post hoc
              comparisons).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig1s3"
          title="Figure 1—figure supplement 3."><label data-itemprop="label">Figure 1—figure
            supplement 3.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

#############plot Fig.1 - figure supplement 3

#addition of median values per position into the data.frame as a new variable
ph.midgut2&lt;-ph.midgut%&gt;%group_by(gutregion)%&gt;%mutate(medianph=median(ph,na.rm=TRUE))

#definition of universal ph indicator colors: 1-7
ph.colors.rgb&lt;-c(
&quot;202 58 67&quot;,
&quot;235 81 42&quot;,
&quot;252 125 19&quot;,
&quot;253 190 2&quot;,
&quot;254 250 0&quot;,
&quot;235 230 54&quot;,
&quot;133 203 40&quot;
)

#transformation of RGB colors into hex colors
ph.colors.hex&lt;-sapply(strsplit(ph.colors.rgb, &quot; &quot;), function(ph.colors.rgb)
    rgb(ph.colors.rgb[1], ph.colors.rgb[2], ph.colors.rgb[3], maxColorValue=255))

#plotting of Fig.1 - figure supplement 3
fig.1.figure.supplement3&lt;-ggplot()+
geom_boxplot(data=ph.midgut2,mapping=aes(x=gutregion,y=ph,fill=medianph),colour=&quot;grey30&quot;,lwd=1.5,outlier.shape=NA,alpha=0.5,coef=0)+
scale_fill_gradientn(colours=ph.colors.hex,guide=FALSE,breaks=c(1,2,3,4,5,6,7),limits=c(1,7.5))+
geom_point(data=ph.midgut2,mapping=aes(x=gutregion,y=ph,fill=ph),pch=21,color=&quot;white&quot;,position=position_jitter(width=0.1),size=6.5,alpha=1)+
scale_x_discrete(name=&quot;Gut position&quot;,labels=c(&quot;Crop&quot;,&quot;Midgut\nposition 1&quot;,&quot;Midgut\nposition 2&quot;,&quot;Midgut\nposition 3&quot;,&quot;Midgut\nposition 4&quot;))+
scale_y_continuous(name=&quot;pH-value&quot;,limits=c(1,7),breaks=c(1,2,3,4,5,6,7))+
annotate(&quot;text&quot;,x=c(1,2,3,4,5),y=c(4.5,6.5,6.5,6.5,6.5),size=9,label=c(&quot;a&quot;,&quot;b&quot;,&quot;b&quot;,&quot;b&quot;,&quot;b&quot;),fontface=2)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=1.5),
      axis.ticks=element_line(colour=&quot;black&quot;,size=1.5),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=20),
      axis.text.y=element_text(colour=&quot;black&quot;,size=20),
      axis.title.x=element_text(colour=&quot;black&quot;,size=25,margin=margin(20,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=25,margin=margin(0,22,0,0)),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key.height=unit(3.6,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=&quot;right&quot;)
fig.1.figure.supplement3</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="acidity-along-the-gastrointestinal-tract-of-c-floridanus">Acidity along the
              gastrointestinal tract of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em>.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">pH-measurements 24 hr after
              access to 10% honey-water in the crop (N = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">ph.summary.midgut[1,2]</code><output slot="output"></output>
              </stencila-code-expression>) and directly after the proventriculus at four points
              along the midgut (N = <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">ph.summary.midgut[2,2]</code><output slot="output"></output>
              </stencila-code-expression> except position four with N = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">ph.summary.midgut[5,2]</code><output slot="output"></output>
              </stencila-code-expression>) (LMM, LR-test, χ<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.ph.midgut,m.ph.midgut0)[2,6],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.ph.midgut,m.ph.midgut0)[2,7]</code><output
                  slot="output"></output></stencila-code-expression>, p<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(
                  myround(anova(m.ph.midgut,m.ph.midgut0)[2,8],3))</code><output
                  slot="output"></output></stencila-code-expression>, same letters indicate p≥
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((output.m.ph.midgut.glht$test)$pvalues[6],3)</code><output
                  slot="output"></output></stencila-code-expression> and different letters indicate
              p<stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(myround((output.m.ph.midgut.glht$test)$pvalues[1],3))</code><output
                  slot="output"></output></stencila-code-expression> in Westfall corrected post hoc
              comparisons). Lines and shaded boxes show the median and interquartile range; points
              show all data. Colors in shaded rectangles near the y-axis represent universal
              indicator pH colors. Color filling of shaded boxes correspond to the median pH color
              of x-axis groups and color filling of points correspond to universal indicator pH
              colors.</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To pinpoint acidopore grooming
          and swallowing of the poison gland secretion as the source for crop acidity and to exclude
          that internal, physiological mechanisms cause crop acidity, we then prevented acidopore
          grooming in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C.
            floridanus</em> ants for 24 hr after feeding through immobilization. This experiment
          revealed that acidopore grooming prevented ants showed a significantly diminished acidity
          in their crop compared to ants that were not prevented from acidopore grooming (<a
            href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1b</a>; LMM,
          LR-test, χ<sup itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.mobility.c.floridanus,m.mobility.c.floridanus0)[2,6],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.mobility.c.floridanus,m.mobility.c.floridanus0)[2,7]</code><output
              slot="output"></output></stencila-code-expression>, p<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">format_pval(
              myround(anova(m.mobility.c.floridanus,m.mobility.c.floridanus0)[2,8],3))</code><output
              slot="output"></output></stencila-code-expression>). A similar, significantly
          diminished acidity in crop lumens was ubiquitously obtained in a comparative survey across
          seven formicine ant species and three genera (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Camponotus</em>, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Lasius</em>, and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Formica</em>) upon comparison of ants that
          were prevented from acidopore grooming through immobilization to non-prevented ants (<a
            href="#fig1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1c</a>;
          two-sided Wilcoxon rank-sum tests, comparisons for all ant species: p≤
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">myround(wilcox.test(ph~treatment,data=mobility.c.maculatus)$p.value,3)</code><output
              slot="output"></output></stencila-code-expression>). We conclude that formicine ants
          attain a highly acidic baseline pH in their crop lumen by taking up their poison into
          their mouth during acidopore grooming (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib140">bib140</a></cite>), and subsequently swallowing it. The comparative
          survey also shows that this behavior is widespread among formicine ants.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Although venomous animals often
          bear a cost of venom production and express behavioural adaptations to limit venom
          expenditure (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib27">bib27</a></cite>), we also found that <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants
          increase the frequency of acidopore grooming within the first 30 min after ingesting
          fluids compared to unfed ants irrespective of the fluid’s nutritional value (<a
            href="#fig1s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure
            supplement 2</a>; GLMM, LR-test, χ<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">myround(anova(m.grooming,m.grooming0)[2,6],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">anova(m.grooming,m.grooming0)[2,7]</code><output
              slot="output"></output></stencila-code-expression>, p<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">format_pval(
              myround(anova(m.grooming,m.grooming0)[2,8],3))</code><output slot="output"></output>
          </stencila-code-expression>; Westfall corrected post-hoc pairwise comparisons, water
          versus. 10% honey-water: p=<stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">myround((output.m.grooming.glht$test)$pvalues[2],3)</code><output
              slot="output"></output></stencila-code-expression>, unfed versus water and unfed
          versus 10% honey-water: both p<stencila-code-expression programming-language="r"
            itemscope="" itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">format_pval(myround((output.m.grooming.glht$test)$pvalues[1],3))</code><output
              slot="output"></output></stencila-code-expression>). Moreover, we found that the
          strong acidity was limited to the crop of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants and did not extend
          to the midgut, the primary site of digestion in insects (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib66">bib66</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib137">bib137</a></cite>; <a href="#fig1s3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1—figure supplement 3</a>;
          pH-measurements at four points along the midgut 24 hr after access to 10% honey-water;
          mean ± se; midgut position 1 = <stencila-code-expression programming-language="r"
            itemscope="" itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">myround(ph.summary.midgut[2,6],2)</code><output slot="output"></output>
          </stencila-code-expression> ± <stencila-code-expression programming-language="r"
            itemscope="" itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">myround(ph.summary.midgut[2,9],2)</code><output slot="output"></output>
          </stencila-code-expression>, midgut position 2 = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">myround(ph.summary.midgut[3,6],2)</code><output
              slot="output"></output></stencila-code-expression> ± <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">myround(ph.summary.midgut[3,9],2)</code><output
              slot="output"></output></stencila-code-expression>, midgut position 3 = 
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">myround(ph.summary.midgut[4,6],2)</code><output slot="output"></output>
          </stencila-code-expression> ± <stencila-code-expression programming-language="r"
            itemscope="" itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">myround(ph.summary.midgut[4,9],2)</code><output slot="output"></output>
          </stencila-code-expression>, midgut position 4 = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">myround(ph.summary.midgut[5,6],2)</code><output
              slot="output"></output></stencila-code-expression> ± <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">myround(ph.summary.midgut[5,9],2)</code><output
              slot="output"></output></stencila-code-expression>). Together, these results led us to
          hypothesize that poison acidified crop lumens in formicine ants do not primarily serve a
          digestive function but may serve microbial control, limiting infection by oral pathogens.
        </p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="poison-acidified-crops-can-prevent-the-passage-of-pathogenic-and-opportunistic-bacteria-to-the-midgut">
          Poison acidified crops can prevent the passage of pathogenic and opportunistic bacteria to
          the midgut</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To investigate a potential
          microbial control function, we next tested whether poison acidified crop lumens can
          inhibit <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Serratia
            marcescens</em>, an insect pathogenic bacterium (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib54">bib54</a></cite>), when ingested together with food and prevent its
          passage from the crop to the midgut in <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants. To this end, we
          first estimated food passage times through the gut of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> with fluorescent
          particles contained in food, as we surmised that ingested fluids need to remain in the
          crop for a minimum time before being passed to the midgut in order for poison swallowing
          and the ensuing crop acidity to take effect after perturbation of the crop pH through
          ingested fluids. In agreement with food passage times through the gastrointestinal tract
          of other ants (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib25">bib25</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib79">bib79</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib78">bib78</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib67">bib67</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib91">bib91</a></cite>), we found that only a small amount of ingested food is
          passed from the crop to the midgut 2–4 hr after feeding, while thereafter food is steadily
          passed from the crop to the midgut until 18 hr after feeding (<a href="#fig2s1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 1</a>).
        </p>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-programminglanguage="r">
          <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code>######################################################################################################
############################### Fig 2 a,b: Serratia viability in vivo ################################
######################################################################################################


#############loading data for Fig.2a,b
growth.serratia&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452663&quot;,header=T)#choose data file: Supplementary Data Fig.2a,b.txt
#str(growth.serratia)

#create factor variable time2 from the continuous variable time
growth.serratia$time2&lt;-as.factor(growth.serratia$time)

#subsetting the data frame into two groups (serratia.crop, serratia.midgut)
growth.serratia.crop&lt;-subset(growth.serratia,gutregion==&quot;crop&quot;)
growth.serratia.crop&lt;-drop.levels(growth.serratia.crop)
growth.serratia.midgut&lt;-subset(growth.serratia,gutregion==&quot;midgut&quot;)
growth.serratia.midgut&lt;-drop.levels(growth.serratia.midgut)

#calculation of median values and confidence intervals of change in CFUs relative to 0h in the crop
growth.serratia.summary&lt;-ddply(growth.serratia,c(&quot;gutregion&quot;,&quot;time&quot;),summarise,
N=length(cfu.change.relative),
median=quantile(cfu.change.relative,0.5),
lowerCI=quantile(cfu.change.relative,0.025),
upperCI=quantile(cfu.change.relative,0.975))
#growth.serratia.summary

#removal of time factor levels 4h and 48h in the midgut of serratia fed ants, as these levels consisted only of zeros and were not included in the statistical analysis
growth.serratia.midgut1&lt;-subset(growth.serratia.midgut,time2!=&quot;48&quot;&amp;time2!=&quot;4&quot;)
growth.serratia.midgut1&lt;-drop.levels(growth.serratia.midgut1)


#############statistical analysis Fig. 2a
m.growth.serratia.crop&lt;-glmmTMB(cfu~time2+(1|colony),ziformula=~1,data=growth.serratia.crop,family=nbinom1)
#summary(m.growth.serratia.crop)

#model validation
res.m.growth.serratia.crop&lt;-simulateResiduals(fittedModel=m.growth.serratia.crop)
#plot(res.m.growth.serratia.crop)

#significance of predictor time since feeding (five levels: 0h, 0.5h, 4h, 24h, 48h)
m.growth.serratia.crop0&lt;-glmmTMB(cfu~1+(1|colony),ziformula=~1,data=growth.serratia.crop,family=nbinom1)
#anova(m.growth.serratia.crop,m.growth.serratia.crop0)

#post-hoc comporisons of predictor-levels time since feeding
m.growth.serratia.crop.glht&lt;-glht_glmmTMB(m.growth.serratia.crop,linfct=mcp(time2=&quot;Tukey&quot;))
output.m.growth.serratia.crop.glht&lt;-summary(m.growth.serratia.crop.glht,test=adjusted(&quot;Westfall&quot;))
#output.m.growth.serratia.crop.glht


#############statistical analysis Fig. 2b
m.growth.serratia.midgut&lt;-glmmTMB(cfu~time2+(1|colony),data=growth.serratia.midgut1,ziformula=~1,family=nbinom2)
#summary(m.growth.serratia.midgut)

#model validation
res.m.growth.serratia.midgut&lt;-simulateResiduals(fittedModel=m.growth.serratia.midgut)
#plot(res.m.growth.serratia.midgut)

#statistical significance of predictor time (three levels: 0h, 0.5h, 24h)
m.growth.serratia.midgut0&lt;-glmmTMB(cfu~1+(1|colony),data=growth.serratia.midgut1,ziformula=~1,family=nbinom2)
#anova(m.growth.serratia.midgut,m.growth.serratia.midgut0)



######################################################################################################
############ Fig. 2 - figure supplement 1a,b: food passage fluorescent particles #####################
######################################################################################################


#############loading data for Fig. 2 - figure supplement 1a,b
food.flow&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452664&quot;,header=T)#choose data file: Supplementary Data Fig.2 - figure supplement 1a,b.txt
#str(food.flow)
food.flow$time&lt;-factor(food.flow$time,levels=c(&quot;2h&quot;,&quot;4h&quot;,&quot;6h&quot;,&quot;8h&quot;,&quot;12h&quot;,&quot;14h&quot;,&quot;16h&quot;,&quot;18h&quot;,&quot;24h&quot;,&quot;48h&quot;))#reorder factor time
food.flow$gutregion&lt;-factor(food.flow$gutregion,levels=c(&quot;crop&quot;,&quot;midgut&quot;,&quot;hindgut&quot;))#reorder factor gutregion

#calculation of median values and confidence intervals of particles in gutregion over time per minor and major workers
food.flow.summary&lt;-ddply(food.flow,c(&quot;caste&quot;,&quot;gutregion&quot;,&quot;time&quot;),summarise,
N=length(particles),
median=quantile(particles,0.5),
lowerCI=quantile(particles,0.025),
upperCI=quantile(particles,0.975))
#food.flow.summary

#subsetting the data frame food.flow into two groups (food.flow.minor, food.flow.major)
food.flow.minor&lt;-subset(food.flow,caste==&quot;minor&quot;)
food.flow.minor&lt;-drop.levels(food.flow.minor)
food.flow.major&lt;-subset(food.flow,caste==&quot;major&quot;)
food.flow.major&lt;-drop.levels(food.flow.major)



######################################################################################################
################### Fig. 2 - figure supplement 2a,b: E.coli viability in vivo ########################
######################################################################################################


#############loading data for Fig. 2 - figure supplement 2a,b
growth.ecoli&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452665&quot;,header=T)#choose data file: Supplementary Data Fig.2 - figure supplement 2a,b.txt
#str(growth.ecoli)

#create factor variable time2 from the continuous variable time
growth.ecoli$time2&lt;-as.factor(growth.ecoli$time)

#subsetting the data frame into two groups (ecoli.crop, ecoli.midgut)
growth.ecoli.crop&lt;-subset(growth.ecoli,gutregion==&quot;crop&quot;)
growth.ecoli.crop&lt;-drop.levels(growth.ecoli.crop)
growth.ecoli.midgut&lt;-subset(growth.ecoli,gutregion==&quot;midgut&quot;)
growth.ecoli.midgut&lt;-drop.levels(growth.ecoli.midgut)

#calculation of median values and confidence intervals of change in CFUs relative to 0h in the crop
growth.ecoli.summary&lt;-ddply(growth.ecoli,c(&quot;gutregion&quot;,&quot;time&quot;),summarise,
N=length(cfu.change.relative),
median=quantile(cfu.change.relative,0.5),
lowerCI=quantile(cfu.change.relative,0.025),
upperCI=quantile(cfu.change.relative,0.975))
#growth.ecoli.summary

#removal of time factor levels 0h in the midgut of e.coli fed ants, as this level consisted only of zeros and were not included in the statistical analysis
growth.ecoli.midgut1&lt;-subset(growth.ecoli.midgut,time2!=&quot;0&quot;)
growth.ecoli.midgut1&lt;-drop.levels(growth.ecoli.midgut1)


#############statistical analysis Fig. 2 - figure supplement 2a
m.growth.ecoli.crop&lt;-glmmTMB(cfu~time2+colony,data=growth.ecoli.crop,ziformula=~1,family=nbinom1)
#summary(m.growth.ecoli.crop)

#model validation
res.m.growth.ecoli.crop&lt;-simulateResiduals(fittedModel=m.growth.ecoli.crop)
#plot(res.m.growth.ecoli.crop)

#statistical significance of predictor time since feeding (five levels: 0h, 0.5h, 4h, 24h, 48h)
m.growth.ecoli.crop0&lt;-glmmTMB(cfu~colony,data=growth.ecoli.crop,ziformula=~1,family=nbinom1)
#anova(m.growth.ecoli.crop,m.growth.ecoli.crop0)

#statistical significance of predictor colony (four levels: C313, C322, C333, C94)
m.growth.ecoli.crop1&lt;-glmmTMB(cfu~time2,data=growth.ecoli.crop,ziformula=~1,family=nbinom1)
#anova(m.growth.ecoli.crop,m.growth.ecoli.crop1)

#post-hoc comporisons of predictor-levels time since feeding
m.growth.ecoli.crop1.glht&lt;-glht_glmmTMB(m.growth.ecoli.crop1,linfct=mcp(time2=&quot;Tukey&quot;))
output.m.growth.ecoli.crop1.glht&lt;-summary(m.growth.ecoli.crop1.glht,test=adjusted(&quot;Westfall&quot;))
#output.m.growth.ecoli.crop1.glht


#############statistical analysis Fig. 2 - figure supplement 2b
m.growth.ecoli.midgut&lt;-glmmTMB(cfu~time2+(1|colony),data=growth.ecoli.midgut1,ziformula=~1,family=nbinom1)
#summary(m.growth.ecoli.midgut)

#model validation
res.m.growth.ecoli.midgut&lt;-simulateResiduals(fittedModel=m.growth.ecoli.midgut)
#plot(res.m.growth.ecoli.midgut)

#statistical significance of predictor time since feeding (four levels: 0.5h, 4h, 24h, 48h)
m.growth.ecoli.midgut0&lt;-glmmTMB(cfu~1+(1|colony),data=growth.ecoli.midgut1,ziformula=~1,family=nbinom1)
#anova(m.growth.ecoli.midgut,m.growth.ecoli.midgut0)

#post-hoc comporisons of predictor-levels time since feeding
m.growth.ecoli.midgut.glht&lt;-glht_glmmTMB(m.growth.ecoli.midgut,linfct=mcp(time2=&quot;Tukey&quot;))
output.m.growth.ecoli.midgut.glht&lt;-summary(m.growth.ecoli.midgut.glht,test=adjusted(&quot;Westfall&quot;))
#output.m.growth.ecoli.midgut.glht


######################################################################################################
##################### Fig. 2 - figure supplement 3: Serratia growth in vitro #########################
######################################################################################################


#############loading data for Fig. 2 - figure supplement 3
serratia.growth.invitro&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452666&quot;,header=T)#choose file: Supplementary Data Fig. 2 - figure supplement 3.txt
#str(serratia.growth.invitro)

#calculation of median values and confidence intervals of change in CFUs relative to pH 5
serratia.growth.invitro.summary&lt;-ddply(serratia.growth.invitro,c(&quot;ph&quot;),summarize,
median.cfu.change=quantile(cfu.change.relative,0.5),
lowerCI.cfu.change=quantile(cfu.change.relative,0.025),
upperCI.cfu.change=quantile(cfu.change.relative,0.975))
#serratia.growth.invitro.summary

#removal of pH levels 2 and 3 from serratia.growth.invitro, as these levels consisted only of zeros
serratia.growth.invitro1&lt;-subset(serratia.growth.invitro,ph==&quot;pH5&quot;|ph==&quot;pH4&quot;)
serratia.growth.invitro1&lt;-drop.levels(serratia.growth.invitro1)
#str(serratia.growth.invitro1)


#############statistical analysis Fig. 2 - figure supplement 3
m.serratia.growth.invitro1&lt;-glm.nb(cfu~ph,data=serratia.growth.invitro1)
#summary(m.serratia.growth.invitro1)

#model validation
res.m.serratia.growth.invitro1&lt;-simulateResiduals(fittedModel=m.serratia.growth.invitro1)
#plot(res.m.serratia.growth.invitro1)

#statistical significance of predictor pH-level (two levels: pH5, pH4)
m.serratia.growth.invitro10&lt;-glm.nb(cfu~1,data=serratia.growth.invitro1)
#anova(m.serratia.growth.invitro1,m.serratia.growth.invitro10)</code></pre>
        </stencila-code-chunk>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We then measured the viability
          of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Serratia marcescens</em>
          ingested together with food in the gastrointestinal tract of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> at two time points before
          (0.5 hr and 4 hr) and after (24 hr and 48 hr) main food passage from the crop to the
          midgut, with the time directly after food ingestion (0 hr) serving as a reference. We
          found that <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>
          presence decreased sharply over time in the crop (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2a</a>; GLMM, LR-test, χ<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.growth.serratia.crop,m.growth.serratia.crop0)[2,6],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.growth.serratia.crop,m.growth.serratia.crop0)[2,7]</code><output
              slot="output"></output></stencila-code-expression>, p<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">format_pval(
              myround(anova(m.growth.serratia.crop,m.growth.serratia.crop0)[2,8],3))</code><output
              slot="output"></output></stencila-code-expression>). The proportion of CFUs that we
          were able to retrieve from the crop relative to the mean at 0 hr in the crop diminished
          from <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(growth.serratia.summary[2,4]*100)</code><output
              slot="output"></output></stencila-code-expression>% at 0.5 hr post-feeding (median,
          CI: <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(growth.serratia.summary[2,5]*100)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.serratia.summary[2,6]*100)</code><output
              slot="output"></output></stencila-code-expression>%) to <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.serratia.summary[3,4]*100)</code><output
              slot="output"></output></stencila-code-expression>% at 4 hr (CI:
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(growth.serratia.summary[3,5]*100)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.serratia.summary[3,6]*100)</code><output
              slot="output"></output></stencila-code-expression>%), 24 hr (CI:
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(growth.serratia.summary[4,5]*100)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.serratia.summary[4,6]*100)</code><output
              slot="output"></output></stencila-code-expression>%), and 48 hr (CI:
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(growth.serratia.summary[5,5]*100)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.serratia.summary[5,6]*100)</code><output
              slot="output"></output></stencila-code-expression>%) post-feeding. In addition,
          relative to the mean at 0 hr in the crop, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> could only be detected at
          extremely low numbers in the midgut (median <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.serratia.summary[6,4]*100)</code><output
              slot="output"></output></stencila-code-expression>%) at 0 hr (CI:
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(growth.serratia.summary[6,5]*100)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.serratia.summary[6,6]*100)</code><output
              slot="output"></output></stencila-code-expression>%), 0.5 hr (CI:
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(growth.serratia.summary[7,5]*100)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.serratia.summary[7,6]*100)</code><output
              slot="output"></output></stencila-code-expression>%) and 24 hr (CI:
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(growth.serratia.summary[9,5]*100)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.serratia.summary[9,6]*100)</code><output
              slot="output"></output></stencila-code-expression>%) post-feeding and not at all at 4
          hr and 48 hr post-feeding (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2b</a>; GLMM, LR-test, χ<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.growth.serratia.midgut,m.growth.serratia.midgut0)[2,6],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.growth.serratia.midgut,m.growth.serratia.midgut0)[2,7]</code><output
              slot="output"></output></stencila-code-expression>, p=<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.growth.serratia.midgut,m.growth.serratia.midgut0)[2,8],3)</code><output
              slot="output"></output></stencila-code-expression>)). A similar, rapid reduction in
          the crop and inability to pass from the crop to the midgut was obtained when we fed <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli,</em> a potential
          opportunistic bacterium that is not a gut associate of insects (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib10">bib10</a></cite>) to <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants (<a href="#fig2s2"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 2</a>;
          crop: GLMM, LR-test, χ<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.growth.ecoli.crop,m.growth.ecoli.crop0)[2,6],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.growth.ecoli.crop,m.growth.ecoli.crop0)[2,7]</code><output
              slot="output"></output></stencila-code-expression>, p<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">format_pval(
              myround(anova(m.growth.ecoli.crop,m.growth.ecoli.crop0)[2,8],3))</code><output
              slot="output"></output></stencila-code-expression>; midgut: GLMM, LR-test, χ<sup
            itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.growth.ecoli.midgut,m.growth.ecoli.midgut0)[2,6],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.growth.ecoli.midgut,m.growth.ecoli.midgut0)[2,7]</code><output
              slot="output"></output></stencila-code-expression>, p=<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.growth.ecoli.midgut,m.growth.ecoli.midgut0)[2,8],3)</code><output
              slot="output"></output></stencila-code-expression>).</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2" title="Figure 2.">
          <label data-itemprop="label">Figure 2.</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

#############plot Fig. 2a
fig.2a&lt;-ggplot()+
geom_boxplot(data=growth.serratia.crop,aes(x=time2,y=cfu.change.relative),fill=&quot;white&quot;,outlier.shape=NA,lwd=1.5,alpha=0.3,coef=0,width=0.4)+
geom_point(data=growth.serratia.crop,aes(x=time2,y=cfu.change.relative),pch=21,fill=&quot;deeppink1&quot;,color=&quot;white&quot;,alpha=1,position=position_jitter(width=0.1),size=5)+
annotate(&quot;text&quot;,x=c(1,2,3,4,5),y=c(6.5,6.5,0.7,0.7,0.7),size=9,label=c(&quot;a&quot;,&quot;a&quot;,&quot;b&quot;,&quot;b&quot;,&quot;b&quot;),fontface=2)+
scale_x_discrete(name=&quot;Time&quot;,labels=c(&quot;0h&quot;,&quot;0.5h&quot;,&quot;4h&quot;,&quot;24h&quot;,&quot;48h&quot;))+
scale_y_continuous(name=&quot;CFU change&quot;,limits=c(-0.01,7.5))+
labs(tag=&quot;a&quot;)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=2),
      axis.ticks=element_line(colour=&quot;black&quot;,size=2),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=25),
      axis.text.y=element_text(colour=&quot;black&quot;,size=25),
      axis.title.x=element_text(colour=&quot;black&quot;,size=30,margin=margin(25,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=30,margin=margin(0,25,0,0)),
      plot.tag=element_text(colour=&quot;black&quot;,size=60,face=&quot;bold&quot;),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15,face=&quot;italic&quot;),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key=element_blank(),
      aspect.ratio=1)
fig.2a

fig.2b&lt;-ggplot()+
geom_boxplot(data=growth.serratia.midgut,aes(x=time2,y=cfu.change.relative),fill=&quot;white&quot;,outlier.shape=NA,lwd=1.5,alpha=0.7,coef=0,width=0.4)+
geom_point(data=growth.serratia.midgut,aes(x=time2,y=cfu.change.relative),fill=&quot;deeppink1&quot;,pch=21, color=&quot;white&quot;,alpha=1,position=position_jitter(width=0.1),size=5)+
annotate(&quot;text&quot;,x=c(3),y=c(0.15),size=9,label=c(expression(paste(italic(&quot;P&quot;),&quot; = 0.593&quot;))),fontface=2)+
scale_x_discrete(name=&quot;Time&quot;,labels=c(&quot;0h&quot;,&quot;0.5h&quot;,&quot;4h&quot;,&quot;24h&quot;,&quot;48h&quot;))+
scale_y_continuous(name=&quot;CFU change&quot;,limits=c(-0.01,0.17))+
labs(tag=&quot;b&quot;)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=2),
      axis.ticks=element_line(colour=&quot;black&quot;,size=2),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=25),
      axis.text.y=element_text(colour=&quot;black&quot;,size=25),
      axis.title.x=element_text(colour=&quot;black&quot;,size=30,margin=margin(25,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=30,margin=margin(0,25,0,0)),
      plot.tag=element_text(colour=&quot;black&quot;,size=60,face=&quot;bold&quot;),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15,face=&quot;italic&quot;),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key=element_blank(),
      aspect.ratio=1)
fig.2b</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="viability-of-s-marcescens-over-time-in-the-digestive-tract-of-c-floridanus">
              Viability of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> over time in the
              digestive tract of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em>.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Change in the number of
              colony forming units (CFUs) in the crop (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">a</strong>) and midgut (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong">b</strong>) part of the
              digestive tract (yellow color in insert) relative to the mean CFU-number at 0 hr in
              the crop (CFU change corresponds to single data CFU-value divided by mean CFU-value at
              0 hr in the crop), 0 hr, 0.5 hr, 4 hr, 24 hr, and 48 hr after feeding <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Camponotus floridanus</em> ants 10%
              honey water contaminated with <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Serratia marcescens</em>. (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong">a</strong>), Change of <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> in the
              crop (GLMM, LR-test, χ<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.growth.serratia.crop,m.growth.serratia.crop0)[2,6],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.growth.serratia.crop,m.growth.serratia.crop0)[2,7]</code><output
                  slot="output"></output></stencila-code-expression>, p<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(
                  myround(anova(m.growth.serratia.crop,m.growth.serratia.crop0)[2,8],3))</code><output
                  slot="output"></output></stencila-code-expression>, same letters indicate p≥
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((
                  output.m.growth.serratia.crop.glht$test)$pvalues[8],3)</code><output
                  slot="output"></output></stencila-code-expression> and different letters indicate
              p<stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(myround((output.m.growth.serratia.crop.glht$test)$pvalues[2],3))</code><output
                  slot="output"></output></stencila-code-expression> in Westfall corrected post hoc
              comparisons). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">b</strong>), Change of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> in the midgut (GLMM,
              LR-test, χ<sup itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.growth.serratia.midgut,m.growth.serratia.midgut0)[2,6],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.growth.serratia.midgut,m.growth.serratia.midgut0)[2,7]</code><output
                  slot="output"></output></stencila-code-expression>, p=<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.growth.serratia.midgut,m.growth.serratia.midgut0)[2,8],3)</code><output
                  slot="output"></output></stencila-code-expression>). Note that timepoints with
              zero bacterial growth in the midgut (4 hr and 48 hr) were excluded from the
              statistical model.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2s1"
          title="Figure 2—figure supplement 1"><label data-itemprop="label">Figure 2—figure
            supplement 1</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

#############plot Fig.2 - figure supplement 1a
#subsetting the data frame food.flow.summary into three groups (food.flow.summary.minor.crop, food.flow.summary.minor.midgut, food.flow.summary.minor.hindgut)
food.flow.summary.minor&lt;-subset(food.flow.summary,caste==&quot;minor&quot;)
food.flow.summary.minor&lt;-drop.levels(food.flow.summary.minor)
food.flow.summary.minor.crop&lt;-subset(food.flow.summary.minor,gutregion==&quot;crop&quot;)
food.flow.summary.minor.crop&lt;-drop.levels(food.flow.summary.minor.crop)
food.flow.summary.minor.midgut&lt;-subset(food.flow.summary.minor,gutregion==&quot;midgut&quot;)
food.flow.summary.minor.midgut&lt;-drop.levels(food.flow.summary.minor.midgut)
food.flow.summary.minor.hindgut&lt;-subset(food.flow.summary.minor,gutregion==&quot;hindgut&quot;)
food.flow.summary.minor.hindgut&lt;-drop.levels(food.flow.summary.minor.hindgut)

#plot Fig.2 - figure supplement 1a
fig.2.figure.supplement1a&lt;-ggplot()+
geom_line(data = food.flow.summary.minor.crop,aes(x=time,y=median+1,group=&quot;time&quot;),colour=&quot;blue&quot;,lwd=1.5,alpha=0.8)+
geom_line(data = food.flow.summary.minor.midgut,aes(x=time,y=median+1,group=&quot;time&quot;),colour=&quot;skyblue&quot;,lwd=1.5,alpha=0.8)+
geom_line(data = food.flow.summary.minor.hindgut,aes(x=time,y=median+1,group=&quot;time&quot;),colour=&quot;turquoise&quot;,lwd=1.5,alpha=0.8)+
geom_point(data = food.flow.minor,mapping=aes(x=time,y=particles+1,fill=gutregion),pch=21,color=&quot;white&quot;,position=position_jitter(width=0.1),size=7,alpha=1)+
scale_fill_manual(values=c(&quot;blue&quot;,&quot;skyblue&quot;,&quot;turquoise&quot;))+
scale_x_discrete(name=&quot;Time after feeding&quot;,labels=c(&quot;2h&quot;,&quot;4h&quot;,&quot;6h&quot;,&quot;8h&quot;,&quot;12h&quot;,&quot;14h&quot;,&quot;16h&quot;,&quot;18h&quot;,&quot;24h&quot;,&quot;48h&quot;))+
scale_y_continuous(trans=&quot;log10&quot;,name=&quot;Number particles&quot;,limits=c(-1,3000))+
annotation_logticks(sides=&quot;l&quot;,size=1, short = unit(0.25, &quot;cm&quot;), mid = unit(0.5, &quot;cm&quot;), long = unit(0.8,  &quot;cm&quot;))+
labs(tag=&quot;a&quot;)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=1.5),
      axis.ticks=element_line(colour=&quot;black&quot;,size=1.5),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=35),
      axis.text.y=element_text(colour=&quot;black&quot;,size=35),
      axis.title.x=element_text(colour=&quot;black&quot;,size=40,margin=margin(20,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=40,margin=margin(0,22,0,0)),
      plot.tag=element_text(colour=&quot;black&quot;,size=60,face=&quot;bold&quot;),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key.height=unit(4,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=&quot;right&quot;)
fig.2.figure.supplement1a

#############plot Fig.2 - figure supplement 1b
#subsetting the data frame food.flow.summary into three groups (food.flow.summary.major.crop, food.flow.summary.major.midgut, food.flow.summary.major.hindgut)
food.flow.summary.major&lt;-subset(food.flow.summary,caste==&quot;major&quot;)
food.flow.summary.major&lt;-drop.levels(food.flow.summary.major)
food.flow.summary.major.crop&lt;-subset(food.flow.summary.major,gutregion==&quot;crop&quot;)
food.flow.summary.major.crop&lt;-drop.levels(food.flow.summary.major.crop)
food.flow.summary.major.midgut&lt;-subset(food.flow.summary.major,gutregion==&quot;midgut&quot;)
food.flow.summary.major.midgut&lt;-drop.levels(food.flow.summary.major.midgut)
food.flow.summary.major.hindgut&lt;-subset(food.flow.summary.major,gutregion==&quot;hindgut&quot;)
food.flow.summary.major.hindgut&lt;-drop.levels(food.flow.summary.major.hindgut)

#plot Fig.2 - figure supplement 1b
fig.2.figure.supplement1b&lt;-ggplot()+
geom_line(data = food.flow.summary.major.crop,aes(x=time,y=median+1,group=&quot;time&quot;),colour=&quot;blue&quot;,lwd=1.5,alpha=0.8)+
geom_line(data = food.flow.summary.major.midgut,aes(x=time,y=median+1,group=&quot;time&quot;),colour=&quot;skyblue&quot;,lwd=1.5,alpha=0.8)+
geom_line(data = food.flow.summary.major.hindgut,aes(x=time,y=median+1,group=&quot;time&quot;),colour=&quot;turquoise&quot;,lwd=1.5,alpha=0.8)+
geom_point(data = food.flow.major,mapping=aes(x=time,y=particles+1,fill=gutregion),pch=21,color=&quot;white&quot;,position=position_jitter(width=0.1),size=7,alpha=1)+
scale_fill_manual(values=c(&quot;blue&quot;,&quot;skyblue&quot;,&quot;turquoise&quot;))+
scale_x_discrete(name=&quot;Time after feeding&quot;,labels=c(&quot;2h&quot;,&quot;4h&quot;,&quot;6h&quot;,&quot;8h&quot;,&quot;12h&quot;,&quot;14h&quot;,&quot;16h&quot;,&quot;18h&quot;,&quot;24h&quot;,&quot;48h&quot;))+
scale_y_continuous(trans=&quot;log10&quot;,name=&quot;Number particles&quot;,limits=c(-1,3000))+
annotation_logticks(sides=&quot;l&quot;,size=1, short = unit(0.25, &quot;cm&quot;), mid = unit(0.5, &quot;cm&quot;), long = unit(0.8,  &quot;cm&quot;))+
labs(tag=&quot;b&quot;)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=1.5),
      axis.ticks=element_line(colour=&quot;black&quot;,size=1.5),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=35),
      axis.text.y=element_text(colour=&quot;black&quot;,size=35),
      axis.title.x=element_text(colour=&quot;black&quot;,size=40,margin=margin(20,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=40,margin=margin(0,22,0,0)),
      plot.tag=element_text(colour=&quot;black&quot;,size=60,face=&quot;bold&quot;),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key.height=unit(4,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=&quot;right&quot;)
fig.2.figure.supplement1b</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="food-passage-of-fluorescent-particles-through-the-digestive-tract-of-c-floridanus">
              Food passage of fluorescent particles through the digestive tract of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em>.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Number of fluorescent
              particles on a logarithmic scale in the crop (dark blue), midgut (light blue), and
              hindgut (turquoise) part of the digestive tract of minor (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">a</strong>) and major (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong">b</strong>) ants 2 hr, 4 hr,
              6 hr, 8 hr, 12 hr, 14 hr, 16 hr, 18 hr, 24 hr, and 48 hr after feeding them a 1:1
              honey-water mix with polymethylmethacrylate (PMM) particles (size ≤40 µm). Note that
              for displaying purposes and better visibility of zero values a value of one has been
              added to all datapoints. Points represent the number of counted particles per
              individual ant and lines connect the median value of particles at the different time
              points after feeding.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2s2"
          title="Figure 2—figure supplement 2"><label data-itemprop="label">Figure 2—figure
            supplement 2</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

#############plot Fig. 2 - figure supplement 2a
fig.2.figure.supplement2a&lt;-ggplot()+
geom_boxplot(data=growth.ecoli.crop,aes(x=time2,y=cfu.change.relative),fill=&quot;white&quot;,outlier.shape=NA,lwd=1.5,alpha=0.3,coef=0,width=0.4)+
geom_point(data=growth.ecoli.crop,aes(x=time2,y=cfu.change.relative),pch=21,fill=&quot;darkolivegreen&quot;,color=&quot;white&quot;,alpha=1,size=5,position=position_jitter(width=0.1))+
annotate(&quot;text&quot;,x=c(1,2,3,4,5),y=c(2.5,1.5,1,0.5,0.5),size=9,label=c(&quot;a&quot;,&quot;b&quot;,&quot;c&quot;,&quot;d&quot;,&quot;d&quot;),fontface=2)+#statistical significance 
scale_x_discrete(name=&quot;Time&quot;,labels=c(&quot;0h&quot;,&quot;0.5h&quot;,&quot;4h&quot;,&quot;24h&quot;,&quot;48h&quot;))+
scale_y_continuous(name=&quot;CFU change&quot;,limits=c(-0.01,3))+
labs(tag=&quot;a&quot;)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=2),
      axis.ticks=element_line(colour=&quot;black&quot;,size=2),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=25),
      axis.text.y=element_text(colour=&quot;black&quot;,size=25),
      axis.title.x=element_text(colour=&quot;black&quot;,size=30,margin=margin(25,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=30,margin=margin(0,25,0,0)),
      plot.tag=element_text(colour=&quot;black&quot;,size=60,face=&quot;bold&quot;),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15,face=&quot;italic&quot;),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key=element_blank(),
      aspect.ratio=1)
fig.2.figure.supplement2a

#############plot Fig. 2 - figure supplement 2b
fig.2.figure.supplement2b&lt;-ggplot()+
geom_boxplot(data=growth.ecoli.midgut,aes(x=time2,y=cfu.change.relative),fill=&quot;white&quot;,outlier.shape=NA,lwd=1.5,alpha=0.3,coef=0,width=0.4)+
geom_point(data=growth.ecoli.midgut,aes(x=time2,y=cfu.change.relative),pch=21,fill=&quot;darkolivegreen&quot;,color=&quot;white&quot;,alpha=1,size=5,position=position_jitter(width=0.1))+
annotate(&quot;text&quot;,x=c(2,3,4,5),y=c(0.02,0.02,0.02,0.02),size=9,label=c(&quot;ab&quot;,&quot;a&quot;,&quot;a&quot;,&quot;b&quot;),fontface=2)+
scale_x_discrete(name=&quot;Time&quot;,labels=c(&quot;0h&quot;,&quot;0.5h&quot;,&quot;4h&quot;,&quot;24h&quot;,&quot;48h&quot;))+
scale_y_continuous(name=&quot;CFU change&quot;,limits=c(-0.01,0.05))+
labs(tag=&quot;b&quot;)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=2),
      axis.ticks=element_line(colour=&quot;black&quot;,size=2),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=25),
      axis.text.y=element_text(colour=&quot;black&quot;,size=25),
      axis.title.x=element_text(colour=&quot;black&quot;,size=30,margin=margin(25,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=30,margin=margin(0,25,0,0)),
      plot.tag=element_text(colour=&quot;black&quot;,size=60,face=&quot;bold&quot;),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15,face=&quot;italic&quot;),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key=element_blank(),
      aspect.ratio=1)
fig.2.figure.supplement2b
</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="viability-of-e-coli-over-time-in-the-digestive-tract-of-c-floridanus-over-time">
              Viability of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em>
              over time in the digestive tract of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> over time.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Change in the number of
              colony forming units (CFUs) in the crop (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">a</strong>) and midgut (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong">b</strong>) part of the
              digestive tract (yellow color in insert) relative to mean CFU-number at 0 hr in the
              crop (CFU change corresponds to single data CFU-value divided by the mean CFU-value at
              0 hr in the crop), 0 hr, 0.5 hr, 4 hr, 24 hr, and 48 hr after feeding ants 10% honey
              water contaminated with <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Escherichia coli</em>. (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong">a</strong>), Change of <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em> in the crop
              (GLMM, LR-test, χ<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.growth.ecoli.crop,m.growth.ecoli.crop0)[2,6],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.growth.ecoli.crop,m.growth.ecoli.crop0)[2,7]</code><output
                  slot="output"></output></stencila-code-expression>, p<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(
                  myround(anova(m.growth.ecoli.crop,m.growth.ecoli.crop0)[2,8],3))</code><output
                  slot="output"></output></stencila-code-expression>, same letters indicate p=
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((
                  output.m.growth.ecoli.crop1.glht$test)$pvalues[10],3)</code><output
                  slot="output"></output></stencila-code-expression> and different letters indicate
              p&lt;<stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((
                  output.m.growth.ecoli.crop1.glht$test)$pvalues[5],3)</code><output
                  slot="output"></output></stencila-code-expression> in Westfall corrected post hoc
              comparisons). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">b</strong>), Change of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">E. coli</em> in the midgut (GLMM,
              LR-test, χ<sup itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.growth.ecoli.midgut,m.growth.ecoli.midgut0)[2,6],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.growth.ecoli.midgut,m.growth.ecoli.midgut0)[2,7]</code><output
                  slot="output"></output></stencila-code-expression>, p=<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.growth.ecoli.midgut,m.growth.ecoli.midgut0)[2,8],3)</code><output
                  slot="output"></output></stencila-code-expression>, same letters indicate p≥
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((
                  output.m.growth.ecoli.midgut.glht$test)$pvalues[3],3)</code><output
                  slot="output"></output></stencila-code-expression> and different letters indicate
              p≤<stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((
                  output.m.growth.ecoli.midgut.glht$test)$pvalues[1],3)</code><output
                  slot="output"></output></stencila-code-expression> in Westfall corrected post hoc
              comparisons). Note that timepoints with zero bacterial growth in the midgut (0 hr)
              were excluded from the statistical model.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig2s3"
          title="Figure 2—figure supplement 3"><label data-itemprop="label">Figure 2—figure
            supplement 3</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

#############plot Fig. 2 - figure supplement 3
fig.2.figure.supplement3&lt;-ggplot()+
geom_boxplot(data=serratia.growth.invitro,aes(x=ph,y=cfu.change.relative),fill=&quot;white&quot;,outlier.shape=NA,lwd=1.5,position=position_dodge(0.6),alpha=0.6,coef=0,width=0.4)+
geom_point(data=serratia.growth.invitro,aes(x=ph,y=cfu.change.relative,colour=ph),position=position_jitterdodge(dodge=0.6),size=4,alpha=0.8)+
scale_colour_manual(values=c(&quot;deeppink1&quot;,&quot;deeppink1&quot;,&quot;deeppink1&quot;,&quot;deeppink1&quot;),name=&quot;Raw data&quot;,guide=FALSE)+
scale_x_discrete(name=&quot;pH of honeywater&quot;,labels=c(&quot;2&quot;,&quot;3&quot;,&quot;4&quot;,&quot;5&quot;))+
scale_y_continuous(name=&quot;CFU change&quot;,limits=c(0,1.7))+
annotate(&quot;text&quot;,x=c(3.5),y=c(1.5),size=16,label=c(expression(paste(italic(&quot;P&quot;),&quot; &lt; 0.001&quot;))),fontface=2)+#statistical significance 
geom_segment(aes(x = 3, y = 1.4, xend = 4, yend = 1.4),lwd=2)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=1.5),
      axis.ticks=element_line(colour=&quot;black&quot;,size=1.5),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=30),
      axis.text.y=element_text(colour=&quot;black&quot;,size=30),
      axis.title.x=element_text(colour=&quot;black&quot;,size=40,margin=margin(20,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=40,margin=margin(0,22,0,0)),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=&quot;bottom&quot;,
      aspect.ratio=1)
fig.2.figure.supplement3</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="s-marcescens-growth-in-vitro"><em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> growth in vitro.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Change in the number of
              CFUs relative to the mean at pH 5 (CFU change corresponds to single data CFU-value
              divided by the mean CFU-value at pH 5) after incubation of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Serratia marcescens</em> in 10% honey
              water (pH = 5) or in 10% honey water acidified with commercial formic acid to a pH of
              4, 3, or 2 for 2 hr (GLM, LR-test, χ<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.serratia.growth.invitro1,m.serratia.growth.invitro10)[2,7],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.serratia.growth.invitro1,m.serratia.growth.invitro10)[2,6]</code><output
                  slot="output"></output></stencila-code-expression>, p<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(
                  myround(anova(m.growth.ecoli.crop,m.growth.ecoli.crop0)[2,8],3))</code><output
                  slot="output"></output></stencila-code-expression>). Note that pH-values with zero
              bacterial growth (pH 2 and 3) were excluded from the statistical model.</p>
          </figcaption>
        </figure>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Although in vivo the
          antimicrobial activity of the natural poison is likely higher than the antimicrobial
          activity of formic acid, the main component of the formicine poison gland secretion (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib88">bib88</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib110">bib110</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib128">bib128</a></cite>) due to the presence of other components (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib140">bib140</a></cite>), we then tested the ability of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> to withstand acidic
          conditions created with formic acid in an in vitro experiment. We found that incubation of
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> for 2 hr
          in 10% honey water acidified with formic acid to pH 4 resulted in a significantly lower
          number of CFUs relative to pH 5 and in zero growth for incubations at pH-levels that were
          lower than 4 (<a href="#fig2s3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 3</a>; GLM, LR-test,
          χ<sup itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.serratia.growth.invitro1,m.serratia.growth.invitro10)[2,7],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.serratia.growth.invitro1,m.serratia.growth.invitro10)[2,6]</code><output
              slot="output"></output></stencila-code-expression>, p<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">format_pval(
              myround(anova(m.growth.ecoli.crop,m.growth.ecoli.crop0)[2,8],3))</code><output
              slot="output"></output></stencila-code-expression>). Our data thus indicate that
          poison acidified crops can indeed serve microbial control in formicine ants, likely
          inhibiting bacteria according to their ability to cope with acidic environments (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib89">bib89</a></cite>).</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="access-to-the-poison-improves-survival-upon-ingestion-of-pathogen-contaminated-food">
          Access to the poison improves survival upon ingestion of pathogen contaminated food</h3>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-programminglanguage="r">
          <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code>######################################################################################################
############################### Fig 3: Individual survival ###########################################
######################################################################################################


#############loading data for Fig.3
survival&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452667&quot;,header=T,stringsAsFactors=T)#choose data file: Supplementary Data Fig.3.txt
#str(survival)


#############statistcal analysis for Fig.3
m.survival&lt;-coxme(Surv(time.death.hours,status)~treatment+(1|experiment.block)+(1|colony),data=survival)
#print(m.survival)

#significance of predictor ant treatment (four levels: Serratia- FA-, Serratia- FA+, Serratia-+FA-, Serratia+ FA+)
m.survival0&lt;-coxme(Surv(time.death.hours,status)~1+(1|experiment.block)+(1|colony),data=survival)
#anova(m.survival,m.survival0)

#post-hoc comporisons of predictor-levels ant treatment
m.survival.glht&lt;-glht(m.survival,linfct=mcp(treatment=&quot;Tukey&quot;))
output.m.survival.glht&lt;-summary(m.survival.glht,test=adjusted(&quot;Westfall&quot;))
#output.m.survival.glht</code></pre>
        </stencila-code-chunk>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To test whether acidic crops
          also provide a fitness benefit upon ingestion of pathogen contaminated food, we prevented
          acidopore grooming through immobilization in <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants for 24 hr after
          feeding them once with 5 µL of either <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> contaminated honey water
          or non-contaminated honey water and monitored their survival thereafter without providing
          additional food. We found that acidopore access after pathogen ingestion significantly
          increased the survival probability of ants (<a href="#fig3" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 3</a>; COXME, LR-test, χ<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">myround(anova(m.survival,m.survival0)[2,2],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">anova(m.survival,m.survival0)[2,3]</code><output
              slot="output"></output></stencila-code-expression>, p=<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">myround(anova(m.survival,m.survival0)[2,4],4)</code><output
              slot="output"></output></stencila-code-expression>). The survival of ants prevented
          from acidopore grooming and fed once with the pathogen contaminated food was significantly
          lower than that of non-prevented ants fed the same food source (Westfall corrected
          post-hoc comparisons: FA - | <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Serratia</em> presence + versus. all other
          ant groups: p≤<stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r" slot="text">myround((
              output.m.survival.glht$test)$pvalues[6],3)</code><output slot="output"></output>
          </stencila-code-expression>). In contrast, non-prevented ants fed once with the pathogen
          contaminated food source did not differ in survival to prevented and non-prevented ants
          fed the non-contaminated food source (Westfall corrected post-hoc comparisons: FA + | <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Serratia</em> presence +
          versus. FA + | <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Serratia</em>
          presence – and FA + | <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Serratia</em> presence + versus. FA + | <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Serratia</em> presence –: p≥
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r" slot="text">myround((
              output.m.survival.glht$test)$pvalues[1],3)</code><output slot="output"></output>
          </stencila-code-expression> for both comparisons). Although we observed an overall high
          mortality in this experimental setup, likely due to starvation following the one time
          feeding in combination with social isolation of individually kept ants (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib81">bib81</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib83">bib83</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib135">bib135</a></cite>), this result indicates that poison acidified crop
          lumens provide a fitness benefit in terms of survival to formicine ants upon ingestion of
          pathogen contaminated food.</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig3" title="Figure 3">
          <label data-itemprop="label">Figure 3</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

#############plot Fig. 3 
fig.3&lt;-ggplot(survival,aes(time=time.death.hours,status=status,linetype=treatment,colour=treatment))+
geom_km(lwd=2)+
scale_colour_manual(values=c(&quot;grey&quot;,&quot;grey&quot;,&quot;black&quot;,&quot;black&quot;),name=&quot;Animal treatment&quot;,label=c(&quot;Serratia- | FA-&quot;,&quot;Serratia- | FA+&quot;,&quot;Serratia+ | FA-&quot;,&quot;Serratia+ | FA+&quot;))+
scale_linetype_manual(values=c(&quot;solid&quot;,&quot;dashed&quot;,&quot;solid&quot;,&quot;dashed&quot;),name=&quot;Animal treatment&quot;,labels=c(&quot;Serratia- | FA-&quot;,&quot;Serratia- | FA+&quot;,&quot;Serratia+ | FA-&quot;,&quot;Serratia+ | FA+&quot;))+
scale_x_continuous(name=&quot;Time after feeding [h]&quot;,limits=c(0,160),breaks=seq(0,120,24))+
scale_y_continuous(name=&quot;Proportion survival&quot;,limits=c(0,1))+
geom_segment(aes(x=140,y=0.12,xend=150,yend=0.12),lwd=1.5,col=&quot;grey&quot;,lty=2)+
geom_segment(aes(x=140,y=0.10,xend=150,yend=0.10),lwd=1.5,col=&quot;black&quot;,lty=2)+
geom_segment(aes(x=140,y=0.08,xend=150,yend=0.08),lwd=1.5,col=&quot;grey&quot;,lty=1)+
geom_segment(aes(x=140,y=0.00,xend=150,yend=0.00),lwd=1.5,col=&quot;black&quot;,lty=1)+
annotate(&quot;text&quot;,x=c(155,155),y=c(0.105,0.005),size=10,label=c(&quot;a&quot;,&quot;b&quot;),fontface=2)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=2),
      axis.ticks=element_line(colour=&quot;black&quot;,size=2),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=25),
      axis.text.y=element_text(colour=&quot;black&quot;,size=25),
      axis.title.x=element_text(colour=&quot;black&quot;,size=30,margin=margin(25,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=30,margin=margin(0,25,0,0)),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15),
      legend.key.size=unit(1.5,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=c(0.8,0.8),
      aspect.ratio=1)
fig.3</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="survival-after-ingestion-of-pathogen-contaminated-food">Survival after ingestion
              of pathogen contaminated food.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Survival of individual <em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants
              that were either prevented to ingest the formic acid containing poison gland secretion
              (FA-; ant outlines with blue dot) or not (FA+) after feeding them once either honey
              water contaminated with <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Serratia marcescens</em> (<em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">Serratia</em>+, yellow
              circle with pink dots and black ant outlines) or non-contaminated honey water (<em
                itemscope="" itemtype="http://schema.stenci.la/Emphasis">Serratia</em>-) without
              providing food thereafter (COXME, LR-test, χ<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.survival,m.survival0)[2,2],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.survival,m.survival0)[2,3]</code><output
                  slot="output"></output></stencila-code-expression>, p=<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.survival,m.survival0)[2,4],4)</code><output
                  slot="output"></output></stencila-code-expression>, same letters indicate p≥
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(( output.m.survival.glht$test)$pvalues[1],3)</code><output
                  slot="output"></output></stencila-code-expression> and different letters indicate
              p≤<stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(( output.m.survival.glht$test)$pvalues[6],3)</code><output
                  slot="output"></output></stencila-code-expression> in Westfall corrected post hoc
              comparisons).</p>
          </figcaption>
        </figure>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="access-to-the-poison-in-donor-ants-also-benefits-receiver-ants-without-poison-access-after-food-exchange-via-trophallaxis">
          Access to the poison in donor ants also benefits receiver ants without poison access after
          food exchange via trophallaxis</h3>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-programminglanguage="r">
          <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code>######################################################################################################
#################################### Fig 4: Survival trophallaxis ####################################
######################################################################################################


#############loading data for Fig.4
survival.trophallaxis&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452668&quot;,header=T,stringsAsFactors=T)#choose data file: Supplementary Data Fig.4.txt
#str(survival)


#############statistical analysis for Fig. 4
m.survival.trophallaxis&lt;-coxme(Surv(time.death,status.death)~treatment+(1|colony)+(1|experiment.block)+(1|petridish),data=survival.trophallaxis)
#print(m.survival.trophallaxis)

#significance of predictor ant treatment (four levels: donor FA+, donor FA-, receiver FA+, receiver FA-)
m.survival.trophallaxis0&lt;-coxme(Surv(time.death,status.death)~1+(1|colony)+(1|experiment.block)+(1|petridish),data=survival.trophallaxis)
#anova(m.survival.trophallaxis,m.survival.trophallaxis0)

#post-hoc comparisons of predictor-levels ant treatment
m.survival.trophallaxis.glht&lt;-glht(m.survival.trophallaxis,linfct=mcp(treatment=&quot;Tukey&quot;))
output.m.survival.trophallaxis.glht&lt;-summary(m.survival.trophallaxis.glht,test=adjusted(&quot;Westfall&quot;))
#output.m.survival.trophallaxis.glht

#hazard ratios between predictor-levels ant treatment through releveling of predictor
treatment1&lt;-factor(survival.trophallaxis$treatment,levels=c(&quot;receiverFA+&quot;,&quot;receiverFA-&quot;,&quot;donorFA+&quot;,&quot;donorFA-&quot;))
treatment2&lt;-factor(survival.trophallaxis$treatment,levels=c(&quot;donorFA+&quot;,&quot;receiverFA+&quot;,&quot;receiverFA-&quot;,&quot;donorFA-&quot;))
treatment3&lt;-factor(survival.trophallaxis$treatment,levels=c(&quot;receiverFA-&quot;,&quot;receiverFA+&quot;,&quot;donorFA+&quot;,&quot;donorFA-&quot;))
m.survival.trophallaxis1&lt;-coxme(Surv(time.death,status.death)~treatment1+(1|colony)+(1|experiment.block)+(1|petridish),data=survival.trophallaxis)
#print(m.survival.trophallaxis1)
m.survival.trophallaxis2&lt;-coxme(Surv(time.death,status.death)~treatment2+(1|colony)+(1|experiment.block)+(1|petridish),data=survival.trophallaxis)
#print(m.survival.trophallaxis2)
m.survival.trophallaxis3&lt;-coxme(Surv(time.death,status.death)~treatment3+(1|colony)+(1|experiment.block)+(1|petridish),data=survival.trophallaxis)
#print(m.survival.trophallaxis3)



#####################################################################################################
######################### Fig.4 - figure supplement 1: trophallaxis behavior ########################
#####################################################################################################


#############loading data for Fig.4 - figure supplement 1
trophallaxis&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452669&quot;,header=T,stringsAsFactors=T)#choose file: Supplementary Data Fig.4 - figure supplement 1.txt
#str(trophallaxis)


#############statistcal analysis for Fig.4 - figure supplement 1
m.duration.trophallaxis&lt;-lmer(sqrt(sum.duration.trophallaxis)~ant.pair+(1|colony)+(1|experimental.block),data=trophallaxis)
#summary(m.duration.trophallaxis)

#model validation
res.m.duration.trophallaxis&lt;-simulateResiduals(fittedModel=m.duration.trophallaxis)
#plot(res.m.duration.trophallaxis)

#significance of predictor food treatment (three levels: unfed, water, honey)
m.duration.trophallaxis0&lt;-lmer(sqrt(sum.duration.trophallaxis)~1+(1|colony)+(1|experimental.block),data=trophallaxis)
#anova(m.duration.trophallaxis,m.duration.trophallaxis0)</code></pre>
        </stencila-code-chunk>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">The ability to swallow the
          acidic poison may not only improve survival of formicine ants feeding directly on pathogen
          contaminated food but also of ants that share the contaminated food via trophallaxis. To
          test this, we created two types of donor-receiver ant pairs. Donor ants in both pairs were
          directly fed <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S.
            marcescens</em> contaminated food every other day, while receiver ants obtained food
          only through trophallaxis from their respective donor ants. Receiver ants in both pairs
          were precluded from swallowing of the poison through blockage of their acidopore opening,
          while donor ants were blocked in one pair but only sham blocked in the other pair. We
          found that the duration of trophallaxis between the two donor-receiver ant pairs during
          the first 30 min. of the first feeding bout did not significantly differ (<a
            href="#fig4s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4—figure
            supplement 1</a>; LMM, LR-test, χ<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.duration.trophallaxis,m.duration.trophallaxis0)[2,6],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.duration.trophallaxis,m.duration.trophallaxis0)[2,7]</code><output
              slot="output"></output></stencila-code-expression>, p=<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.duration.trophallaxis,m.duration.trophallaxis0)[2,8],3)</code><output
              slot="output"></output></stencila-code-expression>), indicating that trophallactic
          behavior was not influenced through acidopore blockage in donor ants at the beginning of
          the experiment. Over the next 12 d, we found that acidopore blockage per se had a
          significant negative effect on the survival of donor as well as receiver ants (<a
            href="#fig4" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 4</a>; COXME,
          LR-test, χ<sup itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.survival.trophallaxis,m.survival.trophallaxis0)[2,2],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.survival.trophallaxis,m.survival.trophallaxis0)[2,3]</code><output
              slot="output"></output></stencila-code-expression>, p<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">format_pval(
              myround(anova(m.survival.trophallaxis,m.survival.trophallaxis0)[2,4],3))</code><output
              slot="output"></output></stencila-code-expression>). However, although receiver ants
          that obtained food every other day from donors with the ability to swallow the poison died
          at a higher rate than their respective donor counterparts (hazard ratio:
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(exp(m.survival.trophallaxis2$coefficients)[1],2)</code><output
              slot="output"></output></stencila-code-expression>; Westfall corrected post-hoc
          comparison: p<stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">format_pval(myround((output.m.survival.trophallaxis.glht$test)$pvalues[5],3))</code><output
              slot="output"></output></stencila-code-expression>) they were only half as likely to
          die compared to receiver ants that obtained pathogen contaminated food from blocked donors
          unable to swallow their poison (hazard ratio: <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">round(exp(m.survival.trophallaxis3$coefficients)[1],2)</code><output
              slot="output"></output></stencila-code-expression>; Westfall corrected post-hoc
          comparison: p<stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">format_pval(myround((output.m.survival.trophallaxis.glht$test)$pvalues[6],3))</code><output
              slot="output"></output></stencila-code-expression>). This indicates that swallowing of
          the poison and the ensuing crop acidity also provides a fitness benefit to other members
          of a formicine ant society.</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4" title="Figure 4">
          <label data-itemprop="label">Figure 4</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

#############plot Fig. 4
fig.4&lt;-ggplot(survival.trophallaxis,aes(time=time.death,,status=status.death,linetype=treatment,colour=treatment))+
geom_km(lwd=2)+
scale_colour_manual(values=c(&quot;grey&quot;,&quot;grey&quot;,&quot;black&quot;,&quot;black&quot;),name=&quot;Animal:&quot;,labels=c(&quot;donor FA-&quot;,&quot;donor FA+&quot;,&quot;receiver FA- with\ndonor FA-&quot;,&quot;receiver FA- with\ndonor FA+&quot;))+
scale_linetype_manual(values=c(&quot;dashed&quot;,&quot;solid&quot;,&quot;dashed&quot;,&quot;solid&quot;),name=&quot;Animal:&quot;,label=c(&quot;donor FA-&quot;,&quot;donor FA+&quot;,&quot;receiver FA- with\ndonor FA-&quot;,&quot;receiver FA- with\ndonor FA+&quot;))+
scale_x_continuous(name=&quot;Time in days&quot;,breaks=seq(0,14,2))+
scale_y_continuous(name=&quot;Proportion survival&quot;,limits=c(0,1))+
annotate(&quot;text&quot;,x=c(12.5,12.5,12.5,12.5),y=c(0.26,0.17,0.1,0.06),size=10,label=c(&quot;a&quot;,&quot;b&quot;,&quot;c&quot;,&quot;c&quot;),fontface=2)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=2),
      axis.ticks=element_line(colour=&quot;black&quot;,size=2),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=25),
      axis.text.y=element_text(colour=&quot;black&quot;,size=25),
      axis.title.x=element_text(colour=&quot;black&quot;,size=30,margin=margin(25,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=30,margin=margin(0,25,0,0)),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15),
      legend.key.size=unit(1.5,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=c(0.8,0.8),
      aspect.ratio=1)
fig.4</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="survival-after-sharing-pathogen-contaminated-food-via-trophallaxis">Survival after
              sharing pathogen contaminated food via trophallaxis.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Survival of donor ants
              (light gray ant outlines) that were directly fed with pathogen contaminated food
              (yellow circle with pink dots in insert) every other day and were either prevented to
              ingest their formic acid containing poison gland secretion (FA-; ant outlines with
              blue dot) or not (FA+) and survival of receiver ants (black ant outlines) that
              received pathogen contaminated food only through trophallaxis with donor ants and were
              always prevented to ingest their formic acid containing poison gland secretion (FA-)
              (COXME, LR-test, χ<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.survival.trophallaxis,m.survival.trophallaxis0)[2,2],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.survival.trophallaxis,m.survival.trophallaxis0)[2,3]</code><output
                  slot="output"></output></stencila-code-expression>, p<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(
                  myround(anova(m.survival.trophallaxis,m.survival.trophallaxis0)[2,4],3))</code><output
                  slot="output"></output></stencila-code-expression>, same letters indicate p=
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((output.m.survival.trophallaxis.glht$test)$pvalues[2],3)</code><output
                  slot="output"></output></stencila-code-expression>) and different letters indicate
              p≤<stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((output.m.survival.trophallaxis.glht$test)$pvalues[3],3)</code><output
                  slot="output"></output></stencila-code-expression>) in Westfall corrected post hoc
              comparisons).</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig4s1"
          title="Figure 4—figure supplement 1"><label data-itemprop="label">Figure 4—figure
            supplement 1</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

fig.4.figure.supplement1&lt;-ggplot()+
geom_boxplot(data=trophallaxis,mapping=aes(x=ant.pair,y=sum.duration.trophallaxis,fill=ant.pair),outlier.shape=NA,lwd=1.5,width=0.4,coef=0)+
geom_point(data=trophallaxis,mapping=aes(x=ant.pair,y=sum.duration.trophallaxis,color=ant.pair),position=position_jitter(width=0.1),size=4,alpha=0.9)+
scale_fill_manual(values=c(&quot;white&quot;,&quot;white&quot;),name=&quot;Animal pairing:&quot;,labels=c(&quot;donorFA- receiverFA-&quot;,&quot;donorFA+ receiverFA-&quot;),guide=FALSE)+
scale_colour_manual(values=c(&quot;deeppink1&quot;,&quot;deeppink1&quot;),name=&quot;Raw data:&quot;,labels=c(&quot;no&quot;,&quot;yes&quot;),guide=FALSE)+
scale_x_discrete(name=&quot;Animal pairing&quot;,labels=c(&quot;donorFA- receiverFA-&quot;,&quot;donorFA+ receiverFA-&quot;))+
scale_y_continuous(name=&quot;Duration trophallaxis [s]&quot;,limits=c(-5,1800),breaks=seq(0,1800,200))+
geom_segment(aes(x = 1, y = 1750, xend = 2, yend = 1750),lwd=2)+
annotate(&quot;text&quot;,x=c(1.5),y=c(1800),size=10,label=c(expression(paste(italic(&quot;P&quot;),&quot; = 0.268&quot;))),fontface=2)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=1.5),
      axis.ticks=element_line(colour=&quot;black&quot;,size=1.5),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=20),
      axis.text.y=element_text(colour=&quot;black&quot;,size=20),
      axis.title.x=element_text(colour=&quot;black&quot;,size=25,margin=margin(20,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=25,margin=margin(0,22,0,0)),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=&quot;right&quot;)
fig.4.figure.supplement1</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="duration-of-trophallaxis-in-donor-receiver-ant-pairs">Duration of trophallaxis in
              donor-receiver ant pairs.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Total duration of
              trophallaxis events within 30 min. of the first bout of food exchange between
              donor-receiver ant-pairs (LMM, LR-test, χ<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.duration.trophallaxis,m.duration.trophallaxis0)[2,6],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.duration.trophallaxis,m.duration.trophallaxis0)[2,7]</code><output
                  slot="output"></output></stencila-code-expression>, p=<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.duration.trophallaxis,m.duration.trophallaxis0)[2,8],3)</code><output
                  slot="output"></output></stencila-code-expression>). Donor ants in both pairs were
              directly fed with <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Serratia marcescens</em> contaminated
              10% honey water and were either prevented to ingest their formic acid containing
              poison gland secretion (FA-) or not (FA+), while receiver ants received pathogen
              contaminated food only through trophallaxis with the respective donor ants and were
              always prevented to ingest their formic acid containing poison gland secretion (FA-).
            </p>
          </figcaption>
        </figure>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="poison-acidified-crops-allow-members-of-the-bacteria-family-acetobacteraceae-passage-to-the-midgut">
          Poison acidified crops allow members of the bacteria family Acetobacteraceae passage to
          the midgut</h3>
        <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
          data-programminglanguage="r">
          <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
            slot="text"><code>######################################################################################################
################################ Fig 5 a,b: Asaia viability in vivo ##################################
######################################################################################################


#############loading data for Fig.5a,b
growth.asaia&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452670&quot;,header=T,stringsAsFactors=T)#choose data file: Supplementary Data Fig.5a,b.txt
#str(growth.asaia)

#create factor variable time2 from the continuous variable time
growth.asaia$time2&lt;-as.factor(growth.asaia$time)

#subsetting the data frame into two groups (growth.asaia.crop, growth.asaia.midgut)
growth.asaia.crop&lt;-subset(growth.asaia,gutregion==&quot;crop&quot;)
growth.asaia.crop&lt;-drop.levels(growth.asaia.crop)
growth.asaia.midgut&lt;-subset(growth.asaia,gutregion==&quot;midgut&quot;)
growth.asaia.midgut&lt;-drop.levels(growth.asaia.midgut)

#calculation of median values and confidence intervals of change in CFUs relative to 0h in the crop
growth.asaia.summary&lt;-ddply(growth.asaia,c(&quot;gutregion&quot;,&quot;time&quot;),summarise,
N=length(cfu.change.relative),
median=quantile(cfu.change.relative,0.5),
lowerCI=quantile(cfu.change.relative,0.025),
upperCI=quantile(cfu.change.relative,0.975))
#growth.asaia.summary

#removal of time factor levels 0h in the midgut of asaia fed ants, as this level consisted only of zeros and is not included in the statistical analysis
growth.asaia.midgut1&lt;-subset(growth.asaia.midgut,time2!=&quot;0&quot;)
growth.asaia.midugt1&lt;-drop.levels(growth.asaia.midgut1)


#############statistical analysis Fig. 5a
m.growth.asaia.crop&lt;-glmmTMB(cfu~time2+(1|colony),data=growth.asaia.crop,ziformula=~1,family=nbinom2)
#summary(m.growth.asaia.crop)

#model validation
res.m.growth.asaia.crop&lt;-simulateResiduals(fittedModel=m.growth.asaia.crop)
#plot(res.m.growth.asaia.crop)

#statistical significance of predictor time since feeding (five levels: 0h, 0.5h, 4h, 24h, 48h)
m.growth.asaia.crop0&lt;-glmmTMB(cfu~1+(1|colony),data=growth.asaia.crop,ziformula=~1,family=nbinom2)
#anova(m.growth.asaia.crop,m.growth.asaia.crop0)

#post-hoc comporisons of predictor-levels time since feeding
m.growth.asaia.crop.glht&lt;-glht_glmmTMB(m.growth.asaia.crop,linfct=mcp(time2=&quot;Tukey&quot;))
output.m.growth.asaia.crop.glht&lt;-summary(m.growth.asaia.crop.glht,test=adjusted(&quot;Westfall&quot;))
#output.m.growth.asaia.crop.glht


#############statistical analysis Fig. 5b
m.growth.asaia.midgut&lt;-glmmTMB(cfu~time2+(1|colony),data=growth.asaia.midgut1,ziformula=~1,family=nbinom1)
#summary(m.growth.asaia.midgut)

#model validation
res.m.growth.asaia.midgut&lt;-simulateResiduals(fittedModel=m.growth.asaia.midgut)
#plot(res.m.growth.asaia.midgut)

#statistical significance of predictor time since feeding (four levels: 0.5h, 4h, 24h, 48h)
m.growth.asaia.midgut0&lt;-glmmTMB(cfu~1+(1|colony),data=growth.asaia.midgut1,ziformula=~1,family=nbinom1)
#anova(m.growth.asaia.midgut,m.growth.asaia.midgut0)

#post-hoc comporisons of predictor-levels time since feeding
m.growth.asaia.midgut.glht&lt;-glht_glmmTMB(m.growth.asaia.midgut,linfct=mcp(time2=&quot;Tukey&quot;))
output.m.growth.asaia.midgut.glht&lt;-summary(m.growth.asaia.midgut.glht,test=adjusted(&quot;Westfall&quot;))
#output.m.growth.asaia.midgut.glht



######################################################################################################
##################### Fig. 5 - figure supplement 1: Asaia growth in vitro ############################
######################################################################################################


#############loading data for Fig. 5 - figure supplement 1
asaia.growth.invitro&lt;-read.delim(&quot;https://datadryad.org/stash/downloads/file_stream/452671&quot;,header=T,stringsAsFactors=T)#choose file: Supplementary Data Fig. 5 - figure supplement 1.txt
#str(asaia.growth.invitro)

#calculation of median values and confidence intervals of change in CFUs relative to pH 5
asaia.growth.invitro.summary&lt;-ddply(asaia.growth.invitro,c(&quot;ph&quot;),summarize,
median.cfu.change=quantile(cfu.change.relative,0.5),
lowerCI.cfu.change=quantile(cfu.change.relative,0.025),
upperCI.cfu.change=quantile(cfu.change.relative,0.975))
#asaia.growth.invitro.summary

#removal of pH level 2 from asaia.growth.invitro, as this level consisted only of zeros
asaia.growth.invitro1&lt;-subset(asaia.growth.invitro,ph!=&quot;pH2&quot;)
asaia.growth.invitro1&lt;-drop.levels(asaia.growth.invitro1)
#str(asaia.growth.invitro1)


#############statistical analysis Fig. 5 - figure supplement 1
m.asaia.growth.invitro1&lt;-glm.nb(cfu~ph,data=asaia.growth.invitro1)
#summary(m.asaia.growth.invitro1)

#model validation
res.m.asaia.growth.invitro1&lt;-simulateResiduals(fittedModel=m.asaia.growth.invitro1)
#plot(res.m.asaia.growth.invitro1)

#statistical significance of predictor pH-level (two levels: pH5, pH4)
m.asaia.growth.invitro10&lt;-glm.nb(cfu~1,data=asaia.growth.invitro1)
#anova(m.asaia.growth.invitro1,m.asaia.growth.invitro10)

#post-hoc comparison among predictor levels of pH (three levels: pH5, pH4, pH3)
m.asaia.growth.invitro1.glht&lt;-glht(m.asaia.growth.invitro1,linfct=mcp(ph=&quot;Tukey&quot;))
output.m.asaia.growth.invitro1.glht&lt;-summary(m.asaia.growth.invitro1.glht,test=adjusted(&quot;Westfall&quot;))
#output.m.asaia.growth.invitro1.glht</code></pre>
        </stencila-code-chunk>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In addition to microbial
          control, poison acidified formicine ant crops might act as a chemical filter for
          gut-associated microbial communities, similar to gut morphological structures that can act
          as mechanical filters in ants (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib25">bib25</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib51">bib51</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib85">bib85</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib87">bib87</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib117">bib117</a></cite>) and other insects (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib71">bib71</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib107">bib107</a></cite>). To investigate the idea of a chemical filter, we
          tested the ability of the insect gut-associated bacterium <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. (family Acetobacteraceae)
          (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib34">bib34</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib44">bib44</a></cite>) to withstand acidic environments in vitro and in vivo.
          In contrast to <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S.
            marcescens</em> (<a href="#fig2s2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 2</a>), <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. was not affected
          by an incubation for 2 hr in 10% honey water acidified with formic acid to pH 4 and was
          still able to grow when incubated at pH 3 in in vitro tests (<a href="#fig5s1"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 5—figure supplement 1</a>;
          GLM, overall LR-test χ<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.asaia.growth.invitro1,m.asaia.growth.invitro10)[2,7],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.asaia.growth.invitro1,m.asaia.growth.invitro10)[2,6]</code><output
              slot="output"></output></stencila-code-expression>, p<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">format_pval(
              myround(anova(m.asaia.growth.invitro1,m.asaia.growth.invitro10)[2,8],3))</code><output
              slot="output"></output></stencila-code-expression>; Westfall corrected post hoc
          comparisons: pH = 5 versus. pH = 4: p=<stencila-code-expression programming-language="r"
            itemscope="" itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">myround((output.m.asaia.growth.invitro1.glht$test)$pvalues[3],3)</code><output
              slot="output"></output></stencila-code-expression>, all other comparisons: p
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">format_pval(myround((output.m.asaia.growth.invitro1.glht$test)$pvalues[1],3))</code><output
              slot="output"></output></stencila-code-expression>). Moreover, in in vivo tests, <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. only gradually
          diminished over time in the crop (<a href="#fig5" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 5a</a>; GLMM; LR-test, χ<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.growth.asaia.crop,m.growth.asaia.crop0)[2,6],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.growth.asaia.crop,m.growth.asaia.crop0)[2,7]</code><output
              slot="output"></output></stencila-code-expression>, p<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">format_pval(myround(anova(m.growth.asaia.crop,m.growth.asaia.crop0)[2,8],3))</code><output
              slot="output"></output></stencila-code-expression>) with the proportion of CFUs that
          we were able to retrieve from the crop relative to the mean at 0 hr in the crop
          diminishing to only <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(growth.asaia.summary[3,4]*100)</code><output slot="output"></output>
          </stencila-code-expression>% (median, CI: <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.asaia.summary[3,5]*100)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.asaia.summary[3,6]*100)</code><output
              slot="output"></output></stencila-code-expression>%) and <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.asaia.summary[4,4]*100)</code><output
              slot="output"></output></stencila-code-expression>% (CI: <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.asaia.summary[4,5]*100)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.asaia.summary[4,6]*100)</code><output
              slot="output"></output></stencila-code-expression>%) at 4 hr and 24 hr post-feeding,
          respectively. At the same time, relative to the mean at 0 hr in the crop, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. steadily increased in the
          midgut (<a href="#fig5" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            5b</a>; GLMM; LR-test, χ<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">myround(anova(m.growth.asaia.midgut,m.growth.asaia.midgut0)[2,6],3)</code><output
              slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">anova(m.growth.asaia.midgut,m.growth.asaia.midgut0)[2,7]</code><output
              slot="output"></output></stencila-code-expression>, p<stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r"
              slot="text">format_pval(myround(anova(m.growth.asaia.midgut,m.growth.asaia.midgut0)[2,8],3))</code><output
              slot="output"></output></stencila-code-expression>) from its initial absence at 0 hr
          post-feeding to <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(growth.asaia.summary[10,4]*100)</code><output
              slot="output"></output></stencila-code-expression>% (median, CI:
          <stencila-code-expression programming-language="r" itemscope=""
            itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
              slot="text">round(growth.asaia.summary[10,5]*100)</code><output
              slot="output"></output></stencila-code-expression><stencila-code-expression
            programming-language="r" itemscope="" itemtype="http://schema.stenci.la/CodeExpression">
            <code class="r" slot="text">round(growth.asaia.summary[10,6]*100)</code><output
              slot="output"></output></stencila-code-expression>%) at 48 hr post-feeding. This
          suggests that in formicine ants, poison acidified crops might act as a chemical filter
          that works selectively against the establishment of opportunistic and potentially harmful
          bacteria but allows entry and establishment of members of the bacterial family
          Acetobacteraceae.</p>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig5" title="Figure 5">
          <label data-itemprop="label">Figure 5</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

#############plot Fig. 5a
fig.5a&lt;-ggplot()+
geom_boxplot(data=growth.asaia.crop,aes(x=time2,y=cfu.change.relative),fill=&quot;white&quot;,outlier.shape=NA,lwd=1.5,alpha=0.3,coef=0,width=0.4)+
geom_point(data=growth.asaia.crop,aes(x=time2,y=cfu.change.relative),pch=21,fill=&quot;grey70&quot;,color=&quot;white&quot;,alpha=1,size=5,position=position_jitter(width=0.1))+
annotate(&quot;text&quot;,x=c(1,2,3,4,5),y=c(3,3,1.7,0.8,0.5),size=9,label=c(&quot;a&quot;,&quot;a&quot;,&quot;b&quot;,&quot;c&quot;,&quot;d&quot;),fontface=2)+#statistical significance 
scale_x_discrete(name=&quot;Time&quot;,labels=c(&quot;0h&quot;,&quot;0.5h&quot;,&quot;4h&quot;,&quot;24h&quot;,&quot;48h&quot;))+
scale_y_continuous(name=&quot;CFU change&quot;,limits=c(-0.01,4))+
labs(tag=&quot;a&quot;)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=2),
      axis.ticks=element_line(colour=&quot;black&quot;,size=2),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=25),
      axis.text.y=element_text(colour=&quot;black&quot;,size=25),
      axis.title.x=element_text(colour=&quot;black&quot;,size=30,margin=margin(25,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=30,margin=margin(0,25,0,0)),
      plot.tag=element_text(colour=&quot;black&quot;,size=60,face=&quot;bold&quot;),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15,face=&quot;italic&quot;),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key=element_blank(),
      aspect.ratio=1)
fig.5a

#############plot Fig. 5b
fig.5b&lt;-ggplot()+
geom_boxplot(data=growth.asaia.midgut,aes(x=time2,y=cfu.change.relative),fill=&quot;white&quot;,outlier.shape=NA,lwd=1.5,alpha=0.3,coef=0,width=0.4)+
geom_point(data=growth.asaia.midgut,aes(x=time2,y=cfu.change.relative),pch=21,fill=&quot;grey70&quot;,color=&quot;white&quot;,alpha=1,size=5,position=position_jitter(width=0.1))+
annotate(&quot;text&quot;,x=c(2,3,4,5),y=c(0.02,0.02,0.03,0.065),size=9,label=c(&quot;a&quot;,&quot;a&quot;,&quot;b&quot;,&quot;c&quot;),fontface=2)+
scale_x_discrete(name=&quot;Time&quot;,labels=c(&quot;0h&quot;,&quot;0.5h&quot;,&quot;4h&quot;,&quot;24h&quot;,&quot;48h&quot;))+
scale_y_continuous(name=&quot;Change in CFU&#39;s&quot;,limits=c(-0.01,0.065))+
labs(tag=&quot;b&quot;)+
theme(axis.line = element_line(colour = &quot;black&quot;,size=2),
      axis.ticks=element_line(colour=&quot;black&quot;,size=2),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=25),
      axis.text.y=element_text(colour=&quot;black&quot;,size=25),
      axis.title.x=element_text(colour=&quot;black&quot;,size=30,margin=margin(25,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=30,margin=margin(0,25,0,0)),
      plot.tag=element_text(colour=&quot;black&quot;,size=60,face=&quot;bold&quot;),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15,face=&quot;italic&quot;),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key=element_blank(),
      aspect.ratio=1)
fig.5b
</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="viability-of-asaia-sp-over-time-in-the-digestive-tract-of-c-floridanus">Viability
              of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia sp</em>. over
              time in the digestive tract of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em>.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Change in the number of
              colony forming units (CFUs) in the crop (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">a</strong>) and midgut (<strong
                itemscope="" itemtype="http://schema.stenci.la/Strong">b</strong>) part of the
              digestive tract (yellow color in insert) relative to the mean CFU-number at 0 hr in
              the crop (CFU change corresponds to single data CFU-values divided by mean CFU-value
              at 0 hr in the crop), 0 hr, 0.5 hr, 4 hr, 24 hr, and 48 hr after feeding ants 10%
              honey water contaminated with <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">a</strong>), Change of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. in the crop (GLMM;
              LR-test, χ<sup itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.growth.asaia.crop,m.growth.asaia.crop0)[2,6],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.growth.asaia.crop,m.growth.asaia.crop0)[2,7]</code><output
                  slot="output"></output></stencila-code-expression>, p<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(myround(anova(m.growth.asaia.crop,m.growth.asaia.crop0)[2,8],3))</code><output
                  slot="output"></output></stencila-code-expression>, same letters indicate p=
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((output.m.growth.asaia.crop.glht$test)$pvalues[1],3)</code><output
                  slot="output"></output></stencila-code-expression> and different letters indicate
              p≤<stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((output.m.growth.asaia.crop.glht$test)$pvalues[5],3)</code><output
                  slot="output"></output></stencila-code-expression> in Westfall corrected post hoc
              comparisons). (<strong itemscope=""
                itemtype="http://schema.stenci.la/Strong">b</strong>), Change of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. in the midgut (GLMM;
              LR-test, χ<sup itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> =<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.growth.asaia.midgut,m.growth.asaia.midgut0)[2,6],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.growth.asaia.midgut,m.growth.asaia.midgut0)[2,7]</code><output
                  slot="output"></output></stencila-code-expression>, p<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(myround(anova(m.growth.asaia.midgut,m.growth.asaia.midgut0)[2,8],3))</code><output
                  slot="output"></output></stencila-code-expression>, same letters indicate p=
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((output.m.growth.asaia.midgut.glht$test)$pvalues[1],3)</code><output
                  slot="output"></output></stencila-code-expression> and different letters indicate
              p≤<stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((output.m.growth.asaia.midgut.glht$test)$pvalues[4],3)</code><output
                  slot="output"></output></stencila-code-expression> in Westfall corrected post hoc
              comparisons). Note that timepoints with zero bacterial growth in the midgut (0 hr)
              were excluded from the statistical model.</p>
          </figcaption>
        </figure>
        <figure itemscope="" itemtype="http://schema.stenci.la/Figure" id="fig5s1"
          title="Figure 5—figure supplement 1"><label data-itemprop="label">Figure 5—figure
            supplement 1</label>
          <stencila-code-chunk itemscope="" itemtype="http://schema.stenci.la/CodeChunk"
            data-programminglanguage="r">
            <pre class="language-r" itemscope="" itemtype="http://schema.stenci.la/CodeBlock"
              slot="text"><code>#&#39; @width 40
#&#39; @height 30

#############plot Fig. 5 - figure supplement 1
fig.5.figure.supplement1&lt;-ggplot()+
geom_boxplot(data=asaia.growth.invitro,aes(x=ph,y=cfu.change.relative),fill=&quot;white&quot;,outlier.shape=NA,lwd=1.5,position=position_dodge(0.6),alpha=0.6,coef=0,width=0.4)+
geom_point(data=asaia.growth.invitro,aes(x=ph,y=cfu.change.relative,colour=ph),position=position_jitterdodge(dodge=0.6),size=4,alpha=0.8)+
scale_colour_manual(values=c(&quot;grey40&quot;,&quot;grey40&quot;,&quot;grey40&quot;,&quot;grey40&quot;),name=&quot;Raw data:&quot;,guide=FALSE)+
annotate(&quot;text&quot;,x=c(2,3,4),y=c(0.9,1.4,1.4),size=9,label=c(&quot;b&quot;,&quot;a&quot;,&quot;a&quot;),fontface=2)+#statistical significance 
scale_x_discrete(name=&quot;pH of honeywater&quot;,labels=c(&quot;2&quot;,&quot;3&quot;,&quot;4&quot;,&quot;5&quot;))+
scale_y_continuous(name=&quot;CFU change&quot;,limits=c(0,1.7))+
theme(axis.line = element_line(colour = &quot;black&quot;,size=1.5),
      axis.ticks=element_line(colour=&quot;black&quot;,size=1.5),
      axis.ticks.length=unit(0.3,&quot;cm&quot;),
      axis.text.x=element_text(colour=&quot;black&quot;,size=30),
      axis.text.y=element_text(colour=&quot;black&quot;,size=30),
      axis.title.x=element_text(colour=&quot;black&quot;,size=40,margin=margin(20,0,0,0)),
      axis.title.y=element_text(colour=&quot;black&quot;,size=40,margin=margin(0,22,0,0)),
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      panel.background = element_blank(),
      legend.title=element_text(size=15),
      legend.text=element_text(size=15),
      legend.key.size=unit(1.2,&quot;cm&quot;),
      legend.key=element_blank(),
      legend.position=&quot;bottom&quot;,
      aspect.ratio=1)
fig.5.figure.supplement1</code></pre>
          </stencila-code-chunk>
          <figcaption>
            <h4 itemscope="" itemtype="http://schema.stenci.la/Heading"
              id="asaia-sp-growth-in-vitro"><em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Asaia sp</em>. growth in vitro.</h4>
            <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Change in the number of
              CFUs relative to the mean at pH 5 (CFU change corresponds to single data CFU-value
              divided by mean CFU-value at pH 5) after incubation of <em itemscope=""
                itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. in 10% honey water
              (pH = 5) or in 10% honey water acidified with commercial formic acid to a pH of 4, 3,
              or 2 for 2 hr (GLM, LR-test χ<sup itemscope=""
                itemtype="http://schema.stenci.la/Superscript"><span
                  data-itemtype="http://schema.org/Number">2</span></sup> = 
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround(anova(m.asaia.growth.invitro1,m.asaia.growth.invitro10)[2,7],3)</code><output
                  slot="output"></output></stencila-code-expression>, df = <stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">anova(m.asaia.growth.invitro1,m.asaia.growth.invitro10)[2,6]</code><output
                  slot="output"></output></stencila-code-expression>, p<stencila-code-expression
                programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(
                  myround(anova(m.asaia.growth.invitro1,m.asaia.growth.invitro10)[2,8],3))</code><output
                  slot="output"></output></stencila-code-expression>, same letters indicate p=
              <stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">myround((output.m.asaia.growth.invitro1.glht$test)$pvalues[3],3)</code><output
                  slot="output"></output></stencila-code-expression>, and different letters indicate
              p<stencila-code-expression programming-language="r" itemscope=""
                itemtype="http://schema.stenci.la/CodeExpression"><code class="r"
                  slot="text">format_pval(myround((output.m.asaia.growth.invitro1.glht$test)$pvalues[1],3))</code><output
                  slot="output"></output></stencila-code-expression> in Westfall corrected post hoc
              comparisons). Note that pH-values with zero bacterial growth (pH 2) were excluded from
              the statistical model.</p>
          </figcaption>
        </figure>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="discussion">Discussion</h2>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In this study, we investigated
          how formicine ants solve the challenge to control harmful microbes in their food while at
          the same time allowing acquisition and transmission of beneficial microbes from and with
          their food. We found that formicine ants swallow their antimicrobial, highly acidic poison
          gland secretion during the behavior of acidopore grooming. The resulting acidic
          environment in their stomach, the crop, can protect formicine ants from food borne
          bacterial pathogens while at the same time allowing the acquisition and establishment of
          members of the bacterial family Acetobacteraceae, a recurring part of the gut microbiota
          of formicine ants.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Highly acidic stomach lumens
          are ubiquitous in higher vertebrates, including amphibians, reptiles, birds and mammals
          (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib7">bib7</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib80">bib80</a></cite>). In insects, highly acidic gut regions have so far
          only rarely been described from the midgut (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib28">bib28</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib66">bib66</a></cite>). The mechanisms responsible for the creation of a gut
          lumen compartment with a certain pH are often unknown in insects (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib57">bib57</a></cite>), but in principle, highly acidic gut regions in
          insects may, similar to vertebrates (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib60">bib60</a></cite>), be generated through physiological mechanisms (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib93">bib93</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib96">bib96</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib109">bib109</a></cite>). Alternatively, acidic derivatives of gut-associated
          microbes (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib122">bib122</a></cite>, <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib123">bib123</a></cite>, <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib149">bib149</a></cite>) or acidic gland secretions (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib11">bib11</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib100">bib100</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib143">bib143</a></cite>) might contribute to the insect gut pH. In agreement
          with the latter, the results of our study show that formicine ants maintain a highly
          acidic baseline pH in their stomach, the crop, through swallowing of their poison gland
          secretion during acidopore grooming. Interestingly, although we found that a higher crop
          acidity was observed in all formicine ants in our comparative survey when they had access
          to their poison, we also found that crop acidity was highly variable in ants with and
          without access to their poison. While a variable crop acidity in ants without access to
          their poison could indicate the existence of additional internal or external sources that
          maintain crop acidity, a variable crop acidity in ants with access to their poison could
          indicate species specific differences in acidopore grooming, in the composition of the
          poison gland secretion or in optimal crop acidity. Future studies will need to explore
          these possibilities.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Sanitation of food through the
          addition of organic acids or through acidic fermentation is frequently practiced by humans
          (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib29">bib29</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib64">bib64</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib139">bib139</a></cite>) and sanitation of food with antimicrobials from
          different sources is ubiquitous in animals that provision food to their offspring or that
          store, cultivate, develop or live in food (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib35">bib35</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib62">bib62</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib63">bib63</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib74">bib74</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib102">bib102</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib144">bib144</a></cite>). A microbial control function of poison acidified
          crops in formicine ants to sanitize ingested food is supported by our survival experiments
          and our in vivo and in vitro bacterial growth and viability experiments. There we found
          that access to the poison improved survival of formicine ants after feeding on pathogen
          contaminated food. We also found that pathogenic and opportunistic bacteria were quickly
          inhibited in the crop when ingested with food and could not establish in the midgut.
          Although our data suggests that this is likely due to the sensitivity of these bacteria to
          acidic environments, our evidence for this is only indirect. At present it is unclear
          whether the acidic environment in the crop is sufficient to protect formicine ants and to
          inhibit pathogenic and opportunistic microbes ingested with food or whether acidic
          conditions act in concert with other factors. Studies in vertebrates and the fruit fly <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Drosophila melanogaster</em>
          have shown that acidic gut regions together with immune system effectors serve microbial
          control and prevent infection by oral pathogens (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib50">bib50</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib68">bib68</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib92">bib92</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib113">bib113</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib119">bib119</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib133">bib133</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib136">bib136</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib147">bib147</a></cite>). Concordantly, previous studies investigating
          formicine ant trophallactic fluids <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib55">bib55</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib86">bib86</a></cite> found the presence of proteins related to cathepsin D,
          a lysosomal aspartic protease that can exhibit antibacterial effector activity and the
          proteolytic production of antimicrobial peptides (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib105">bib105</a></cite>). Future studies will therefore need to disentangle
          the relative contributions of crop acidity and immune system effectors released into the
          gut lumen to the improved survival of formicine ants in the face of pathogen contaminated
          food and to the microbe inhibitory action of poison acidified crops in formicine ants.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In addition to improving their
          own survival, the ability of donor ants to access their poison also improved the survival
          of receiver ants without access to their poison following trophallactic exchange of
          pathogen-contaminated food. Acidic crop lumens might therefore act as a barrier to disease
          spread in formicine ant societies, alleviating the cost of sharing pathogen contaminated
          food (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib108">bib108</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib125">bib125</a></cite>) and counteracting the generally increased risk of
          pathogen exposure and transmission associated with group-living (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib1">bib1</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib13">bib13</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib75">bib75</a></cite>). Although food distribution via trophallaxis is a
          dynamic process governed by many different factors (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib22">bib22</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib23">bib23</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib52">bib52</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib130">bib130</a></cite>), the technological advances in recent years to track
          multiple individuals of a group simultaneously over time (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib49">bib49</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib52">bib52</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib69">bib69</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib134">bib134</a></cite>), will make it possible to clarify the contribution
          of acidic crop lumens to disease spread prevention in formicine ant societies.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Acidic crop lumens might not
          only serve microbial control but might also act as a chemical filter for microbes, working
          selectively against pathogenic or opportunistic bacteria but allowing entry and
          establishment of species from the bacteria family Acetobacteraceae. We found that,
          compared to a bacterial pathogen, a bacterial member of the Acetobacteraceae was not only
          better able to withstand acidic conditions created with formic acid in vitro but was able
          to establish itself in the midgut of formicine ants in vivo. This suggests that host
          filtering of microbes (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib94">bib94</a></cite>) via acidic crop lumens
          might explain at least part of the recurrent presence of Acetobacteraceae in the gut of
          formicine ants and the otherwise reduced microbial diversity and abundance of
          gut-associated microbes in formicine ants (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib18">bib18</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib19">bib19</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib31">bib31</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib32">bib32</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib72">bib72</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib124">bib124</a></cite>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Though not formally established
          (see <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib103">bib103</a></cite>), recent studies
          indicate a mutualistic relationship between formicine ants, and their gut-associated
          Acetobacteraceae (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib19">bib19</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib32">bib32</a></cite>). Thus, the creation of an acidic crop environment in
          formicine ants that is easier to endure if colonizing microbes are mutualists agrees with
          the concept of screening as a mechanism to choose microbial partners out of a pool of
          environmental microbes (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib3">bib3</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib4">bib4</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib9">bib9</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib127">bib127</a></cite>). Contrary to signalling, where costly information is
          displayed to partners, in screening a costly environment is imposed on partners that
          excludes all but high-quality ones. Partner choice in a number of cross-kingdom mutualisms
          is readily explained by screening (see examples in <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib3">bib3</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib4">bib4</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib9">bib9</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib127">bib127</a></cite>) but experimental evidence is so far limited in
          insect-microbe associations (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib70">bib70</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib71">bib71</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib120">bib120</a></cite>). Although our experiments can only hint at screening
          as a means of partner choice in formicine ants, the results of our study would provide
          support for the prediction that screening is more likely to evolve from a host’s defense
          trait against parasites (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib3">bib3</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib4">bib4</a></cite>), that is, the highly acidic, antimicrobial poison that
          creates a selective environment for microbes. Our study might therefore not only provide
          evidence that the well-established cross talk between the immune system and gut-associated
          microbes in vertebrates and invertebrates (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib30">bib30</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib119">bib119</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib133">bib133</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib147">bib147</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib150">bib150</a></cite>) can hold for a broader range of immune defense
          traits (sensu <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib112">bib112</a></cite>) but also that this
          cross talk can be realized through signals (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib46">bib46</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib101">bib101</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib145">bib145</a></cite>) and through screening.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Overall, our study provides
          evidence that poison acidified crop lumens of formicine ants can act as a chemical filter
          for control and selection of microbes ingested with food. Poison acidified formicine crops
          might thus contribute to the ecological and evolutionary success of this group of insects
          by alleviating the increased risk of pathogen exposure and transmission associated with
          group living but allowing the acquisition and transmission of microbial mutualists.
          Similar microbial filters likely represent a widespread theme to manage harmful and
          beneficial host-associated microbes but have so far only partly been uncovered in a few
          animal systems (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib26">bib26</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib39">bib39</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib126">bib126</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib129">bib129</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib131">bib131</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib132">bib132</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib146">bib146</a></cite>).</p>
        <h2 itemscope="" itemtype="http://schema.stenci.la/Heading" id="materials-and-methods">
          Materials and methods</h2>
        <table id="keyresource" itemscope="" itemtype="http://schema.org/Table">
          <caption><label data-itemprop="label">Key resources table</label></caption>
          <thead>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Reagent type (species)
                or resource</th>
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Designation</th>
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Source or reference</th>
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Identifiers</th>
              <th itemscope="" itemtype="http://schema.stenci.la/TableCell">Additional information
              </th>
            </tr>
          </thead>
          <tbody>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Biological sample (<em
                  itemscope="" itemtype="http://schema.stenci.la/Emphasis">Camponotus
                  floridanus)</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">Camponotus floridanus</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">See Materials and
                methods</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Biological sample (<em
                  itemscope="" itemtype="http://schema.stenci.la/Emphasis">Camponotus
                  maculatus)</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">Camponotus maculatus</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">See Materials and
                methods</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Biological sample (<em
                  itemscope="" itemtype="http://schema.stenci.la/Emphasis">Lasius fuliginosus)</em>
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">Lasius fuliginosus</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">See Materials and
                methods</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Biological sample (<em
                  itemscope="" itemtype="http://schema.stenci.la/Emphasis">Formica cinerea)</em>
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">Formica cinerea</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">See Materials and
                methods</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Biological sample (<em
                  itemscope="" itemtype="http://schema.stenci.la/Emphasis">Formica cunicularia)</em>
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">Formica cunicularia</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">See Materials and
                methods</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Biological sample (<em
                  itemscope="" itemtype="http://schema.stenci.la/Emphasis">Formica
                  fuscocinerea)</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">Formica fuscocinerea</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">See Materials and
                methods</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Biological sample (<em
                  itemscope="" itemtype="http://schema.stenci.la/Emphasis">Formica pratensis)</em>
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">Formica pratensis</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">See Materials and
                methods</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Biological sample (<em
                  itemscope="" itemtype="http://schema.stenci.la/Emphasis">Formica rufibarbis)</em>
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">Formica rufibarbis</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">See Materials and
                methods</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Strain, strain
                background (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Serratia
                  marcescens)</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">Serratia marcescens</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Strain DSM12481,
                DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig,
                Germany</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Strain, strain
                background (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Escherichia
                  coli)</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">Escherichia coli</em></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Strain DSM6897,
                DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig,
                Germany</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Strain, strain
                background (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em>
                sp.)</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><em itemscope=""
                  itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp.</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Strain SF2.1 <cite
                  itemscope="" itemtype="http://schema.stenci.la/Cite"
                  data-citationmode="Narrative"><a href="#bib44">bib44</a></cite></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Blaubrand intraMARK
                micro pipettes</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Brand, Wertheim, Germany
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><span
                  data-itemtype="http://schema.org/Number">708707</span></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">pH sensitive paper</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Hartenstein, Würzburg,
                Germany</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">PHIP</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">pH electrode</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Unisense, Aarhus,
                Denmark</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Polymethylmethacrylate
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">University of Bayreuth,
                Animal Ecology I, group microplastic</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Leica microscope DM 2000
                LED</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Leica, Wetzlar, Germany
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Leica stereomicroscope M
                165 C</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Leica, Wetzlar, Germany
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Commercial honey</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Different brands</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">10% (w/v), 1:1
                honey:water</td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Other</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">superglue</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">UHU brand</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Chemical compound, drug
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">≥95% Formic acid</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Sigmaaldrich, Merck,
                Darmstadt, Germany</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Cat# F0507</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Chemical compound, drug
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Trypton</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Sigmaaldrich, Merck,
                Darmstadt, Germany</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Cat# T7293-250G</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Chemical compound, drug
              </td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Yeast extract</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Millipore, Merck,
                Darmstadt, Germany</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Cat# Y1625-250G</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
            </tr>
            <tr itemscope="" itemtype="http://schema.stenci.la/TableRow">
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">Software, algorithm</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell">R version 3. 6.1</td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"></td>
              <td itemscope="" itemtype="http://schema.stenci.la/TableCell"><cite itemscope=""
                  itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
                    href="#bib118">bib118</a></cite></td>
            </tr>
          </tbody>
        </table>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="ant-species-and-maintenance">Ant species and maintenance</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Colonies of the carpenter ant
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Camponotus floridanus</em>
          were collected in 2001 and 2003 in Florida, USA, housed in Fluon (Whitford GmbH, Diez,
          Germany) coated plastic containers with plaster ground and maintained at a constant
          temperature of 25°C with 70% humidity and a 12 hr/12 hr light/dark cycle. They were given
          water ad libitum and were fed two times per week with honey water (1:1 tap water and
          commercial quality honey), cockroaches (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Blaptica dubia</em>) and an artificial diet
          (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib8">bib8</a></cite>). For comparison, workers
          of one other <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Camponotus</em>
          species (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Camponotus
            maculatus</em>), collected close to Kibale Forest, Uganda, in 2003 and housed under
          identical conditions as <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Camponotus floridanus</em> were used.
          Additionally, six other formicine ant species, one <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Lasius,</em> and five <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Formica</em> species (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Lasius fuliginosus, Formica cinerea, Formica
            cunicularia, Formica fuscocinerea, Formica pratensis,</em> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Formica rufibarbis</em>) were collected in
          Bayreuth, Germany in 2012 and 2018 and kept for approximately 2 weeks prior experimental
          use at 20°C, 70% humidity and a 14 hr/10 hr light/dark cycle. Except otherwise noted only
          the small worker caste (‘minors’) of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Camponotus</em> species was used.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="acidity-of-the-crop-lumen-and-ph-measurements">Acidity of the crop lumen and pH
          measurements</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To determine whether formicine
          ants swallow their poison after feeding, we tracked changes in pH-levels of the crop lumen
          in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants
          over time. Before use in experimental settings, cohorts of ~100 ants were taken out of
          their natal colony (n = 6 colonies) into small plastic containers lined with Fluon and
          starved for 24–48 hr. Thereafter, ants were put singly into small petri dishes (Ø 55 mm)
          with damp filter paper covered bottom, given access to a droplet of 10% honey water (w/v)
          for 2 hr before removing the food source and measuring the pH of the crop lumen after
          another 2 hr (group 0+4 hr: n = 60 workers), after 24 hr (group 0+24 hr: n = 59 workers)
          or 48 hr (group 0+48 hr: n = 52 workers). To assess the effect of renewed feeding, a
          separate group of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C.
            floridanus</em> ants were given access to 10% honey water 48 hr after the first feeding
          for 2 hr prior to measuring the pH of their crop lumen after another 2 hr (group 48h+4 hr:
          n = 60 workers). To measure the pH, ants were first cold anesthetized on ice, then their
          gaster was cut off with a fine dissection scissor directly behind the petiole and leaking
          crop content (1–3 µL) collected with a capillary (5 µL Disposable Micro Pipettes,
          Blaubrand intraMARK, Brand, Wertheim). The collected crop content was then emptied on a pH
          sensitive paper to assess the pH (Hartenstein, Unitest pH 1–11). This method of collecting
          crop content will invariably result in some mixing of crop lumen content with haemolymph.
          As the pH of the insect haemolymph ranges from only slightly acidic (pH ≥6.5) to
          near-neutral or slightly alkaline (pH ≤8.2) (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib57">bib57</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib93">bib93</a></cite>), this might have biased the results of our pH
          measurements to slightly higher pH values. As a reference point for food pH, we also
          measured the pH of 10% honey water on pH sensitive paper, which gave invariably pH = 5.
        </p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In addition, we measured the pH
          in the crop lumen and at four points in the lumen along the midgut (1st measurement
          directly behind proventriculus to 4th measurement one mm apical from insertion point of
          the Malpighian tubules) of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C.
            floridanus</em> workers that were fed 24 hr prior to measurements with 10% honey-water.
          For these measurements worker guts were dissected as a whole and pH was measured in the
          crop (n = 2 workers from two colonies) and along the midgut (all midgut points n = 10,
          except point four with n = 9 workers from four different colonies) with a needle-shaped
          microelectrode (UNISENSE pH-meter; microelectrode with needle tip of 20 µm diameter).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In formicine ants, oral uptake
          of the poison into the mouth is performed via acidopore grooming (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib140">bib140</a></cite>). During this behavior ants bend their gaster forward
          between the legs and the head down to meet the acidopore, the opening of the poison gland,
          at the gaster tip (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib5">bib5</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib43">bib43</a></cite>). In an additional experiment we therefore compared the
          crop lumen pH of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C.
            floridanus</em> workers from four different colonies that were either prevented to reach
          their acidopore (FA- ants) or could reach their acidopore freely (FA+ ants). To do this,
          we again allowed single ants access to 10% honey water for 2 hr after a starvation period,
          before cold anesthetizing them briefly on ice and immobilizing FA- ants (n = 22 workers)
          in a pipetting tip, while FA+ ants (n = 23 workers) remained un-manipulated. After 24 hr
          we measured the pH of the crop lumen as before.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To investigate whether
          swallowing of the acidic poison is widespread among formicine ants, the latter experiment
          was repeated for six additional formicine ant species (FA- ants: n = 10 workers except for
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Formica pratensis</em> with
          n = 21; FA+ ants: n = 10 workers except for <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Formica pratensis</em> with n = 20; all
          ants: n = 1 colony) in the same fashion as described before with the exception that apart
          from <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Formica pratensis</em>
          the crop lumen was collected through the mouth by gently pressing the ants’ gaster. Crop
          lumen of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Formica
            pratensis</em> ants was collected in the same fashion as crop lumen of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To investigate whether the type
          of fluid and its nutritional value have an influence on the frequency of acidopore
          grooming in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C.
            floridanus</em>, the following experiment was performed. Cohorts of ~100 ants were taken
          out of their natal colony (n = 6 colonies) into small plastic containers and starved for
          24–48 hr. Thereafter, ants were again put singly into small petri dishes (Ø 55 mm) and
          given access to either a 3 µL droplet of 10% honey water (w/v, n = 126 ants, treatment:
          honey-water fed), a 3 µL droplet of tap water (n = 128, water-fed) or to no fluid
          (n = 125, unfed). After acclimatization (unfed ants) or after swallowing of the fluid
          (honey-water and water-fed ants, both 1–2 min.), all ants were filmed for the next 30 min.
          (Logitech webcam c910). These videos were then analyzed for the frequency of acidopore
          grooming.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Finally, we measured the pH in
          the crop lumen of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C.
            floridanus</em> ants (n = 3 colonies) under satiated and starved conditions to estimate
          a baseline level of acidity in the crop. For this, ants taken out of satiated, twice per
          week fed colonies on the day of feeding were compared to ants that were maintained in
          cohorts of ~100 individuals for 3 d with access to 10% honey-water and then starved for 24
          hr before measuring the pH in their crop (n = 10 major and 10 minor workers per colony and
          condition). The pH in the crop lumen was measured as described before by briefly cold
          anesthetizing ants an ice, collecting the crop content through the mouth by gently
          pressing the ants’ gaster and then emptying it on a pH sensitive paper (Hartenstein,
          Unitest pH 1–11).</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="bacterial-strains-and-culture">Bacterial strains and culture</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">As model entomopathogenic
          bacterium <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Serratia
            marcescens</em> DSM12481 (DSMZ Braunschweig, Germany) was used. This bacterium is
          pathogenic in a range of insects (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib54">bib54</a></cite>) and has been detected in formicine ants, that is <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Anoplolepis gracilipes</em>
          (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib33">bib33</a></cite>) and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Camponotus floridanus</em> (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib121">bib121</a></cite>). While often non-lethal within the digestive tract,
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> can cross
          the insect gut wall (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib97">bib97</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib104">bib104</a></cite>) and is highly virulent upon entry into the hemocoel
          (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib47">bib47</a></cite>), not least due to the
          production of bacterial toxins (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib61">bib61</a></cite>). As a model bacterial
          gut-associate of ants <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. strain SF2.1 (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib44">bib44</a></cite>), was used. <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. belongs to the family
          Acetobacteraceae, members of which often thrive in sugar-rich environments (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib90">bib90</a></cite>), such as honeydew that ants like <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> predominantly feed on.
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. is capable of
          cross-colonizing insects of phylogenetically distant genera and orders (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib34">bib34</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib44">bib44</a></cite>) and can be a component of the gut-associated microbial
          community of formicine and other ants (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib31">bib31</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib76">bib76</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib77">bib77</a></cite>). In addition to <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia sp.</em>, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Escherichia coli</em> DSM6897 (DSMZ
          Braunschweig, Germany) was used as a model opportunistic bacterium that is not a
          gut-associate of insects. <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">E.
            coli</em> bacteria are a principal constituent of mammalian gut-associated microbial
          communities but are commonly also found in the environment (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib10">bib10</a></cite>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Bacterial stocks of <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens, Asaia</em> sp.,
          and <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em> were kept in
          25% glycerol at −80°C until use. For use, bacteria were plated on agar plates (LB-medium:
          10 g tryptone, 5 g yeast extract, 20 g agar in 1L MilliQ-water, and GLY-medium: 25 g
          gycerol, 10 g yeast extract, 20 g agar in 1L MilliQ-water with pH adjusted to 5.0, for <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens/E. coli</em> and
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. respectively),
          single colony forming units (CFUs) were picked after 24 hr (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens/E. coli</em>) or 48 hr (<em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp.) of growth at
          30°C and transferred to 5 ml liquid medium (LB-medium and GLY-medium minus agar for <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens/E. coli</em> and
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. respectively)
          for an overnight culture (24 hr) at 30°C. The overnight culture was then pelleted by
          centrifugation at 3000 g, the medium discarded and resolved in 10% (w/v) honey water to
          the respective working concentration for the experiments. The concentration of a typical
          overnight culture was determined for <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. by plating part of the
          overnight culture on agar plates and counting CFUs after 24 hr or 48 hr of growth at 30°C,
          for <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> and
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. respectively.
          This yielded a concentration of 1.865 * 10<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">9</span></sup> ± 5.63 * 10<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">7</span></sup> (mean ± sd) bacteria per mL
          for <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> and
          5.13 * 10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">8</span></sup> ± 8.48 * 10<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">6</span></sup> (mean ± sd) bacteria for <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="survival-experiments">
          Survival experiments</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In a first survival experiment
          we tested whether the ability to perform acidopore grooming within the first 24 hr after
          ingestion of pathogen contaminated food provides a survival benefit for individual <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants. Ants
          from eight colonies were starved for 24–48 hr before start of the experiment, as described
          before, and then workers put singly in small petri dishes were either given access to 5 µL
          of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>
          contaminated 10% honey water (9.33 * 10<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">9</span></sup> bacteria/mL; <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Serratia+</em> ants: n = 127) or
          uncontaminated 10% honey water (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Serratia-</em> ants: n = 135) for 2 min.
          Afterward, all ants were cold anaesthetized and approximately half of the <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Serratia+</em> and the <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Serratia-</em> ants (n = 65 and n = 69,
          respectively) immobilized in a pipetting tip, thus preventing acidopore grooming (FA-
          ants: n = 134) while the other half remained fully mobile (FA+ ants: n = 128). After 24
          hr, FA- ants were freed from the pipetting tip to minimize stress. Mortality of the ants
          was monitored over 5 d (120 hr) every 12 hr providing no additional food, except the one
          time feeding of 5 µL contaminated or uncontaminated honey water at the start of the
          experiment. We chose to provide no additional food after the one time feeding at the
          beginning of the experiment, as an altered feeding behavior, that is, illness induced
          anorexia with known positive or negative effects on survival (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib65">bib65</a></cite>), might otherwise have influenced our results.</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">In an additional survival
          experiment, we investigated whether the ability to acidify the crop lumen has the
          potential to limit oral disease transmission during trophallactic food transfer. To this
          end, <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants
          from seven colonies were again starved, divided randomly in two groups (donor and receiver
          ants, each n = 322) and their gaster marked with one of two colors (Edding 751).
          Additionally, to prevent uptake of the poison, the acidopore opening of all receiver ants
          (receiver FA-) and half of the donor ants (donor FA-) was sealed with superglue, while the
          other half of the donor ants were sham treated (donor FA+) with a droplet of superglue on
          their gaster (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib140">bib140</a></cite>). We then paired these
          ants into two different donor-receiver ant pairs. Pairs with both donor and receiver ants
          having their acidopore sealed (donor FA- | receiver FA-) and pairs with only receiver ants
          having their acidopore sealed (donor FA+ | receiver FA-). Six hours after pairing, donor
          ants from both pairs were isolated and given access to 5 µl of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> contaminated 10% honey
          water (1.865 * 10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">9</span></sup> bacteria/mL) for 12 hr.
          Thereafter donor ants were again paired with the respective receiver ants for 12 hr and
          all pairs filmed for the first 30 min (Logitech webcam c910). These videos were then
          analyzed for the duration of trophallaxis events donor-receiver ant pairs engaged in
          during the first bout of trophallactic food exchange. After this first feeding round,
          donor ants were fed in the same fashion, that is, isolation for 12 hr with access to <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> contaminated
          10% honey water, every 48 hr, while they were maintained with the respective receiver ants
          for the rest of the time. This experimental design ensured that receiver ants were fed
          only through the respective donor ants with pathogen contaminated food. Survival of both,
          donor and receiver ants, was monitored daily for a total of 12 d.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading"
          id="bacterial-viability-and-growth-assays">Bacterial viability and growth assays</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">We tested the ability of <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> and <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. to withstand
          acidic environments in vitro, as well as their ability and the ability of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">E. coli</em> to pass from the crop to the
          midgut in vivo when ingested together with food. In ants, gut morphological structures,
          that is, the infrabuccal pocket, an invagination of the hypopharynx in the oral cavity
          (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib40">bib40</a></cite>), and the
          proventriculus, a valve that mechanically restricts passage of fluids from the crop to the
          midgut (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib41">bib41</a></cite>), consecutively filter
          solid particles down to 2 µm (<cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib85">bib85</a></cite>) which would allow <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> (Ø: 0.5–0.8
          µm, length: 0.9–2 µm, <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib54">bib54</a></cite>), <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. (Ø: 0.4–1 µm, length: 0.8–2.5
          µm, <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib82">bib82</a></cite>), and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">E. coli</em> (length: 1 µm, width: 0.35 µm,
          <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib10">bib10</a></cite>) to pass. For the in
          vitro tests we incubated a diluted bacterial overnight culture (10<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">5</span></sup> and 10<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">4</span></sup> CFU/ml for <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp., respectively) in 10% honey
          water (pH = 5) and in 10% honey water acidified with commercial formic acid to a pH of 4,
          3, or 2 for 2 hr at room temperature (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>: n = 15 for all
          pH-levels, except pH = 4 with n = 13; <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp.: n = 10). Then we plated 100
          µl of the bacterial solutions on agar-medium (LB-medium and GLY-medium for <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> and <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp., respectively)
          and incubated them at 30°C for 24 hr (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>) or 48 hr (<em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp.) before counting
          the number of formed CFUs. For the in vivo tests <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> ants from five (<em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp.), four (<em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em>) or from six
          colonies (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>)
          were starved as before and then individually given access to 5 µL of bacteria contaminated
          10% honey water (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em>
          sp. and <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em>: 1 *
          10<sup itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">7</span></sup> CFU/mL, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>: 1 * 10<sup itemscope=""
            itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">6</span></sup> CFU/mL) for 2 min. To assess
          the number of CFUs in the digestive tract, that is the crop and the midgut, ants were
          dissected either directly after feeding (0 hr; <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>: n = 60 workers; <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. and <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em>: n = 15 each), or
          at 0.5 hr (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S.
            marcescens</em>: n = 60; <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">E. coli</em>: n = 15 each), 4 hr (<em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>: n = 60; <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. and <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em>: n = 15 each), 24
          hr (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>:
          n = 53; <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. and
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em>: n = 15 each) or
          48 hr (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>:
          n = 19; <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. and
          <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em>: n = 15 each)
          after feeding. For dissection, ants were cold anesthetized, the gaster opened and the
          whole gut detached. The crop and the midgut were then separated from the digestive tract,
          placed in a reaction tube, mechanically crushed with a sterile pestle and dissolved in 100
          µL (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. and <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em>) or 150 µL (<em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>) phosphate
          buffered saline (PBS-buffer: 8.74 g NaCl, 1.78 g Na<sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">2</span></sub>HPO<sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">4</span></sub>,2H<sub itemscope=""
            itemtype="http://schema.stenci.la/Subscript"><span
              data-itemtype="http://schema.org/Number">2</span></sub>O in 1L MilliQ-water adjusted
          to a pH of 6.5). The resulting solutions were then thoroughly mixed, 100 µl streaked on
          agar-medium (LB-medium and GLY-medium for <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em>/<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">E.coli</em> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp., respectively) and incubated
          at 30°C for 24 hr (<em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S.
            marcescens</em> and <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">E.
            coli</em>) or 48 hr (<em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp.), before counting the number
          of formed CFUs. No other bacteria (e.g. resident microbes) were apparent in terms of a
          different CFU morphology on the agar plates which agrees with the very low number of
          cultivable resident bacteria present in the midgut of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> (Stoll and Gross,
          unpublished results). This methodology cannot completely exclude that resident <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> or species
          of Acetobacteraceae might have biased our count data by adding a background level of CFUs
          at all timepoints or by adding random outlier CFUs at specific timepoints. Both,
          background level CFU numbers and random outlier CFUs should however not influence observed
          patterns over time. The timepoints of 0 hr, 0.5 hr, 4 hr, 24 hr, and 48 hr in in vivo
          bacterial growth assays were chosen according to literature describing passage of food
          from the crop to the midgut within 3–6 hr after food consumption in ants (<cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib25">bib25</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib79">bib79</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib78">bib78</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib67">bib67</a></cite>; <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib91">bib91</a></cite>). They should thus be representative of two time points
          before food passage from the crop to the midgut (0.5 hr and 4 hr) and two time points
          after food passage from the crop to the midgut (24 hr and 48 hr) together with the
          reference timepoint (0 hr).</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="food-passage-experiment">
          Food passage experiment</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">To estimate food passage from
          the crop to the midgut and hindgut of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> after feeding we
          performed the following experiment. We again took a cohort of ~100 workers out of one
          natal colony of <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C.
            floridanus</em>, starved them for 24 hr and then offered them 200 µL of a 1:1
          honey-water mix with 50 mg of polymethylmethacrylate (PMMA, aka acrylic glass) particles
          (size ≤40 µm). Afterward, we dissected the digestive tract of three major and three minor
          workers at each of the timepoints 2 hr, 4 hr, 6 hr, 8 hr, 12 hr, 14 hr, 16 hr, 18 hr, 24
          hr, and 48 hr after feeding and placed each under a microscope (Leica DM 2000 LED) to
          detect and count the number of particles via fluorescence in the crop, the midgut, and the
          hindgut.</p>
        <h3 itemscope="" itemtype="http://schema.stenci.la/Heading" id="statistical-analyses">
          Statistical analyses</h3>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">All statistical analyses were
          performed with the R statistical programming language (version 3.6.1, <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib118">bib118</a></cite>). All (zero-inflated) General(ized) linear and mixed
          models and Cox mixed-effects models were compared to null (intercept only) or reduced
          models (for those with multiple predictors) using Likelihood Ratio (LR) tests to assess
          the significance of predictors. Pairwise comparisons between factor levels of a
          significant predictor were performed using pairwise post-hoc tests adjusting the
          family-wise error rate according to the method of Westfall (package ‘multcomp’, <cite
            itemscope="" itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib14">bib14</a></cite>). We checked necessary model assumptions of
          (zero-inflated) General(ised) linear and mixed models using model diagnostic tests and
          plots implemented in the package ‘DHARMa’ (<cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib58">bib58</a></cite>). Acidity of the crop lumen (log transformed pH to
          normalize data) and midgut lumen in <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> was analyzed using linear
          mixed models (LMM, package”lme4’, <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib6">bib6</a></cite>) including time since feeding (four levels: 0+4 hr, 0+24
          hr, 0+48 hr, 48h+4 hr; <a href="#fig1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1a</a>), ant manipulation (two levels:
          FA+ and FA-, that is ants with and without acidopore access; <a href="#fig1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1b</a>) or digestive tract part (four
          levels: crop, midgut position 1, midgut position 2, midgut position 3, midgut position 4;
          <a href="#fig1s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 1—figure
            supplement 1</a>) as predictors and natal colony as a random effect. Due to
          non-normality and heteroscedasticity, the acidity of the crop lumen in the seven formicine
          ant species other than <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C.
            floridanus</em> (<a href="#fig1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 1c</a>) was analysed using per species
          Wilcoxon rank-sum tests with ant manipulation (FA+ and FA-) as predictor. The frequency of
          acidopore grooming in <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">C.
            floridanus</em> upon feeding different types of fluids was analyzed using Generalized
          linear mixed models (GLMM, package”lme4’, <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib6">bib6</a></cite>) with negative binomial errors and type of fluid (three
          levels: unfed, water-fed, or 10% honey water fed) as predictor and natal colony as random
          effect (<a href="#fig1s2" itemscope="" itemtype="http://schema.stenci.la/Link">Figure
            1—figure supplement 2</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Survival data were analysed
          with Cox mixed effects models (COXME, package ‘coxme’, <cite itemscope=""
            itemtype="http://schema.stenci.la/Cite" data-citationmode="Narrative"><a
              href="#bib138">bib138</a></cite>). For the survival of individual ants (<a
            href="#fig3" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 3</a>), ant
          treatment (four levels: <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Serratia-</em> | FA-, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Serratia-</em> | FA+, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Serratia</em>+ | FA-, <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Serratia+</em> | FA+) was added as a
          predictor and the three ‘blocks’ in which the experiment was run and the colony ants
          originated from, were included as two random intercept effects. For the survival of
          donor-receiver ant pairs (<a href="#fig4" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4</a>), ant treatment (four levels: donor
          FA+, donor FA-, receiver FA+, receiver FA-) was included as a predictor and the three
          ‘blocks’ in which the experiment was run, the colony ants originated from, and petri dish
          in which donor and receiver ants were paired, were included as three random intercept
          effects. Survival of receiver ants was right censored if the corresponding donor ant died
          at the next feeding bout (right censoring of both donor and receiver ants in one pair upon
          death of one of the ants yielded statistically the same result: COXME, overall LR χ<sup
            itemscope="" itemtype="http://schema.stenci.la/Superscript"><span
              data-itemtype="http://schema.org/Number">2</span></sup> = 60.202, df = 3, p&lt;0.001;
          post-hoc comparisons: receiver FA- versus donor FA-: p=0.388, all other comparisons:
          p&lt;0.001). The duration of trophallaxis events (square-root transformed to normalize
          data) between donor-receiver ant pairs was analysed using a linear mixed model with ant
          pair type (two levels: donor FA+ | receiver FA- and donor FA- | receiver FA-) as predictor
          and the three ‘blocks’, in which the experiment was run and the colony ants originated
          from as random effect (<a href="#fig4s1" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 4—figure supplement 1</a>).</p>
        <p itemscope="" itemtype="http://schema.stenci.la/Paragraph">Bacterial growth in vitro was
          analysed separately for <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">S.
            marcescens</em> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. using Generalized linear
          models (GLM) with negative binomial errors and pH as predictor, excluding pH levels with
          zero bacterial growth due to complete data separation (<a href="#fig2s2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 2</a> and <a
            href="#fig5s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 5—figure
            supplement 1</a>). Relative values shown in <a href="#fig2s2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 2</a> and <a
            href="#fig5s1" itemscope="" itemtype="http://schema.stenci.la/Link">Figure 5—figure
            supplement 1</a> were calculated by dividing each single number of formed CFUs at the
          different pH-values through the mean of formed CFUs at pH 5. Bacterial viability in vivo
          within the digestive tract of <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">C. floridanus</em> over time was analysed
          separately for the crop and midgut for <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">S. marcescens</em> and <em itemscope=""
            itemtype="http://schema.stenci.la/Emphasis">Asaia</em> sp. (<a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2</a> and <a href="#fig5" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 5</a>, respectively) and for <em
            itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em> (<a href="#fig2s2"
            itemscope="" itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 2</a>).
          Zero-inflated generalized linear mixed models with negative binomial errors (package
          ‘glmmTMB’, <cite itemscope="" itemtype="http://schema.stenci.la/Cite"
            data-citationmode="Narrative"><a href="#bib17">bib17</a></cite>) were used to model CFU
          number, with time after feeding as fixed predictor and ant colony as random effect, except
          for the <em itemscope="" itemtype="http://schema.stenci.la/Emphasis">E. coli</em> model in
          the crop where colony was included as fixed factor as the model did not converge with
          colony as a random factor. Timepoints with zero bacterial growth were again excluded in
          the models. Relative CFU values shown in <a href="#fig2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2</a>, <a href="#fig5" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 5</a>, and <a href="#fig2s2" itemscope=""
            itemtype="http://schema.stenci.la/Link">Figure 2—figure supplement 2</a> were calculated
          by dividing single CFU-values through the mean of CFU-values at timepoint 0 hr in the
          crop. Proportions and percentages of relative CFU change in the text are based on these
          relative CFU values.</p>
      </article>
    </main>
  </body>

</html>